Cargando…

Polytype control of spin qubits in silicon carbide

Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Falk, Abram L., Buckley, Bob B., Calusine, Greg, Koehl, William F., Dobrovitski, Viatcheslav V., Politi, Alberto, Zorman, Christian A., Feng, Philip X.-L., Awschalom, David D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674240/
https://www.ncbi.nlm.nih.gov/pubmed/23652007
http://dx.doi.org/10.1038/ncomms2854
_version_ 1782272331076337664
author Falk, Abram L.
Buckley, Bob B.
Calusine, Greg
Koehl, William F.
Dobrovitski, Viatcheslav V.
Politi, Alberto
Zorman, Christian A.
Feng, Philip X.-L.
Awschalom, David D.
author_facet Falk, Abram L.
Buckley, Bob B.
Calusine, Greg
Koehl, William F.
Dobrovitski, Viatcheslav V.
Politi, Alberto
Zorman, Christian A.
Feng, Philip X.-L.
Awschalom, David D.
author_sort Falk, Abram L.
collection PubMed
description Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’ spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron–electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins.
format Online
Article
Text
id pubmed-3674240
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-36742402013-06-06 Polytype control of spin qubits in silicon carbide Falk, Abram L. Buckley, Bob B. Calusine, Greg Koehl, William F. Dobrovitski, Viatcheslav V. Politi, Alberto Zorman, Christian A. Feng, Philip X.-L. Awschalom, David D. Nat Commun Article Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’ spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron–electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins. Nature Pub. Group 2013-05-07 /pmc/articles/PMC3674240/ /pubmed/23652007 http://dx.doi.org/10.1038/ncomms2854 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Falk, Abram L.
Buckley, Bob B.
Calusine, Greg
Koehl, William F.
Dobrovitski, Viatcheslav V.
Politi, Alberto
Zorman, Christian A.
Feng, Philip X.-L.
Awschalom, David D.
Polytype control of spin qubits in silicon carbide
title Polytype control of spin qubits in silicon carbide
title_full Polytype control of spin qubits in silicon carbide
title_fullStr Polytype control of spin qubits in silicon carbide
title_full_unstemmed Polytype control of spin qubits in silicon carbide
title_short Polytype control of spin qubits in silicon carbide
title_sort polytype control of spin qubits in silicon carbide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674240/
https://www.ncbi.nlm.nih.gov/pubmed/23652007
http://dx.doi.org/10.1038/ncomms2854
work_keys_str_mv AT falkabraml polytypecontrolofspinqubitsinsiliconcarbide
AT buckleybobb polytypecontrolofspinqubitsinsiliconcarbide
AT calusinegreg polytypecontrolofspinqubitsinsiliconcarbide
AT koehlwilliamf polytypecontrolofspinqubitsinsiliconcarbide
AT dobrovitskiviatcheslavv polytypecontrolofspinqubitsinsiliconcarbide
AT politialberto polytypecontrolofspinqubitsinsiliconcarbide
AT zormanchristiana polytypecontrolofspinqubitsinsiliconcarbide
AT fengphilipxl polytypecontrolofspinqubitsinsiliconcarbide
AT awschalomdavidd polytypecontrolofspinqubitsinsiliconcarbide