Cargando…
Polytype control of spin qubits in silicon carbide
Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674240/ https://www.ncbi.nlm.nih.gov/pubmed/23652007 http://dx.doi.org/10.1038/ncomms2854 |
_version_ | 1782272331076337664 |
---|---|
author | Falk, Abram L. Buckley, Bob B. Calusine, Greg Koehl, William F. Dobrovitski, Viatcheslav V. Politi, Alberto Zorman, Christian A. Feng, Philip X.-L. Awschalom, David D. |
author_facet | Falk, Abram L. Buckley, Bob B. Calusine, Greg Koehl, William F. Dobrovitski, Viatcheslav V. Politi, Alberto Zorman, Christian A. Feng, Philip X.-L. Awschalom, David D. |
author_sort | Falk, Abram L. |
collection | PubMed |
description | Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’ spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron–electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins. |
format | Online Article Text |
id | pubmed-3674240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36742402013-06-06 Polytype control of spin qubits in silicon carbide Falk, Abram L. Buckley, Bob B. Calusine, Greg Koehl, William F. Dobrovitski, Viatcheslav V. Politi, Alberto Zorman, Christian A. Feng, Philip X.-L. Awschalom, David D. Nat Commun Article Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’ spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron–electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins. Nature Pub. Group 2013-05-07 /pmc/articles/PMC3674240/ /pubmed/23652007 http://dx.doi.org/10.1038/ncomms2854 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Falk, Abram L. Buckley, Bob B. Calusine, Greg Koehl, William F. Dobrovitski, Viatcheslav V. Politi, Alberto Zorman, Christian A. Feng, Philip X.-L. Awschalom, David D. Polytype control of spin qubits in silicon carbide |
title | Polytype control of spin qubits in silicon carbide |
title_full | Polytype control of spin qubits in silicon carbide |
title_fullStr | Polytype control of spin qubits in silicon carbide |
title_full_unstemmed | Polytype control of spin qubits in silicon carbide |
title_short | Polytype control of spin qubits in silicon carbide |
title_sort | polytype control of spin qubits in silicon carbide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674240/ https://www.ncbi.nlm.nih.gov/pubmed/23652007 http://dx.doi.org/10.1038/ncomms2854 |
work_keys_str_mv | AT falkabraml polytypecontrolofspinqubitsinsiliconcarbide AT buckleybobb polytypecontrolofspinqubitsinsiliconcarbide AT calusinegreg polytypecontrolofspinqubitsinsiliconcarbide AT koehlwilliamf polytypecontrolofspinqubitsinsiliconcarbide AT dobrovitskiviatcheslavv polytypecontrolofspinqubitsinsiliconcarbide AT politialberto polytypecontrolofspinqubitsinsiliconcarbide AT zormanchristiana polytypecontrolofspinqubitsinsiliconcarbide AT fengphilipxl polytypecontrolofspinqubitsinsiliconcarbide AT awschalomdavidd polytypecontrolofspinqubitsinsiliconcarbide |