Cargando…
Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein
The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of α-synuclein aggregates and Lewy bodies, often found in PD and other α-synucleinopathies, is thought to be linked...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674407/ https://www.ncbi.nlm.nih.gov/pubmed/23661100 http://dx.doi.org/10.1038/emm.2013.45 |
Sumario: | The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of α-synuclein aggregates and Lewy bodies, often found in PD and other α-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of α-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in α-synuclein-expressing cells would increase the secretion of α-synuclein, subsequently affecting the α-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of α-synuclein. In a mixed culture of α-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular α-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of α-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated α-synuclein exocytosis, thereby promoting α-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology. |
---|