Cargando…

The extracellular space and epileptic activity in the adult brain: Explaining the antiepileptic effects of furosemide and bumetanide

Treatments that modulate the size of the extracellular space (ECS) also block epileptiform activity in adult brain tissue. This includes the loop diuretics furosemide and bumetanide, and alterations of the osmolarity of the ECS. These treatments block epileptiform activity in a variety of laboratory...

Descripción completa

Detalles Bibliográficos
Autor principal: Hochman, Daryl W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674522/
https://www.ncbi.nlm.nih.gov/pubmed/22612805
http://dx.doi.org/10.1111/j.1528-1167.2012.03471.x
Descripción
Sumario:Treatments that modulate the size of the extracellular space (ECS) also block epileptiform activity in adult brain tissue. This includes the loop diuretics furosemide and bumetanide, and alterations of the osmolarity of the ECS. These treatments block epileptiform activity in a variety of laboratory adult seizure models regardless of the underlying synaptic and physiologic mechanisms generating the seizure activity. Optical imaging studies on adult hippocampal slices show that the blockade of epileptiform activity by these treatments is concomitant with their blockade of activity-driven changes of the ECS. Here we develop and analyze the hypothesis that activity-driven changes in the size of the ECS are necessary for the maintenance of hypersynchronous epileptiform activity. In support of this hypothesis is an accumulation of data from a number of studies suggesting that furosemide and bumetanide mediate antiepileptic effects through their blockade of cell swelling, dependent on their antagonism of the glial Na+-K-2Cl cotransporter (NKCC1).