Cargando…
Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast
The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675000/ https://www.ncbi.nlm.nih.gov/pubmed/23754966 http://dx.doi.org/10.1371/journal.pgen.1003548 |
_version_ | 1782272451788406784 |
---|---|
author | Pais, Thiago M. Foulquié-Moreno, María R. Hubmann, Georg Duitama, Jorge Swinnen, Steve Goovaerts, Annelies Yang, Yudi Dumortier, Françoise Thevelein, Johan M. |
author_facet | Pais, Thiago M. Foulquié-Moreno, María R. Hubmann, Georg Duitama, Jorge Swinnen, Steve Goovaerts, Annelies Yang, Yudi Dumortier, Françoise Thevelein, Johan M. |
author_sort | Pais, Thiago M. |
collection | PubMed |
description | The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. |
format | Online Article Text |
id | pubmed-3675000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36750002013-06-10 Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast Pais, Thiago M. Foulquié-Moreno, María R. Hubmann, Georg Duitama, Jorge Swinnen, Steve Goovaerts, Annelies Yang, Yudi Dumortier, Françoise Thevelein, Johan M. PLoS Genet Research Article The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. Public Library of Science 2013-06-06 /pmc/articles/PMC3675000/ /pubmed/23754966 http://dx.doi.org/10.1371/journal.pgen.1003548 Text en © 2013 Pais et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Pais, Thiago M. Foulquié-Moreno, María R. Hubmann, Georg Duitama, Jorge Swinnen, Steve Goovaerts, Annelies Yang, Yudi Dumortier, Françoise Thevelein, Johan M. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast |
title | Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast |
title_full | Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast |
title_fullStr | Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast |
title_full_unstemmed | Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast |
title_short | Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast |
title_sort | comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675000/ https://www.ncbi.nlm.nih.gov/pubmed/23754966 http://dx.doi.org/10.1371/journal.pgen.1003548 |
work_keys_str_mv | AT paisthiagom comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT foulquiemorenomariar comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT hubmanngeorg comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT duitamajorge comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT swinnensteve comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT goovaertsannelies comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT yangyudi comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT dumortierfrancoise comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast AT theveleinjohanm comparativepolygenicanalysisofmaximalethanolaccumulationcapacityandtolerancetohighethanollevelsofcellproliferationinyeast |