Cargando…
When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group
There is increasing evidence that most parapatric cryptic/sister taxa are reproductively compatible across their areas of contact. Consequently, the biological species concept, which assumes absence of interbreeding, is becoming a not so effective criterion in evolutionary ecology. Nevertheless, the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675026/ https://www.ncbi.nlm.nih.gov/pubmed/23755277 http://dx.doi.org/10.1371/journal.pone.0065746 |
_version_ | 1782272457926770688 |
---|---|
author | Zinetti, Francesca Dapporto, Leonardo Vovlas, Alessio Chelazzi, Guido Bonelli, Simona Balletto, Emilio Ciofi, Claudio |
author_facet | Zinetti, Francesca Dapporto, Leonardo Vovlas, Alessio Chelazzi, Guido Bonelli, Simona Balletto, Emilio Ciofi, Claudio |
author_sort | Zinetti, Francesca |
collection | PubMed |
description | There is increasing evidence that most parapatric cryptic/sister taxa are reproductively compatible across their areas of contact. Consequently, the biological species concept, which assumes absence of interbreeding, is becoming a not so effective criterion in evolutionary ecology. Nevertheless, the few parapatric sister taxa showing complete reproductive barriers represent interesting models to study speciation processes and the evolution of reproductive isolation. In this study, we examined contact populations in northwestern Italy of two butterfly species, Zerynthia polyxena and Z. cassandra, characterized by different genitalic morphotypes. We studied levels of divergence among 21 populations distributed from Sicily to France using three genetic markers (the mitochondrial COI and ND1 genes and the nuclear wingless gene) and genitalic geometric morphometrics. Moreover, we performed species distribution modelling to estimate different climatic requirements of Z. polyxena and Z. cassandra. We projected climatic data into glacial maximum scenarios in order to verify if and to which extent glacial cycles could have contributed to speciation processes. Genetic and morphometric analyses identified two main groups. All specimens showed a concordant pattern of diversification, including those individuals sampled in the contact area. Haplotype distribution and climatic models showed that during glacial maxima both species experienced a strong range contraction and presumably remained separated into different microrefugia in southern France, in the Italian Peninsula and on the islands of Elba and Sicily. Long term separation was probably favoured by reduced dispersal ability and high phylopatry, while genitalic diversification probably favoured interbreeding avoidance. Conversely, the aposematic wing pattern remained almost identical. We compared our results with those obtained in other species and concluded that Z. polyxena and Z. cassandra represent a valuable model in the study of speciation. |
format | Online Article Text |
id | pubmed-3675026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36750262013-06-10 When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group Zinetti, Francesca Dapporto, Leonardo Vovlas, Alessio Chelazzi, Guido Bonelli, Simona Balletto, Emilio Ciofi, Claudio PLoS One Research Article There is increasing evidence that most parapatric cryptic/sister taxa are reproductively compatible across their areas of contact. Consequently, the biological species concept, which assumes absence of interbreeding, is becoming a not so effective criterion in evolutionary ecology. Nevertheless, the few parapatric sister taxa showing complete reproductive barriers represent interesting models to study speciation processes and the evolution of reproductive isolation. In this study, we examined contact populations in northwestern Italy of two butterfly species, Zerynthia polyxena and Z. cassandra, characterized by different genitalic morphotypes. We studied levels of divergence among 21 populations distributed from Sicily to France using three genetic markers (the mitochondrial COI and ND1 genes and the nuclear wingless gene) and genitalic geometric morphometrics. Moreover, we performed species distribution modelling to estimate different climatic requirements of Z. polyxena and Z. cassandra. We projected climatic data into glacial maximum scenarios in order to verify if and to which extent glacial cycles could have contributed to speciation processes. Genetic and morphometric analyses identified two main groups. All specimens showed a concordant pattern of diversification, including those individuals sampled in the contact area. Haplotype distribution and climatic models showed that during glacial maxima both species experienced a strong range contraction and presumably remained separated into different microrefugia in southern France, in the Italian Peninsula and on the islands of Elba and Sicily. Long term separation was probably favoured by reduced dispersal ability and high phylopatry, while genitalic diversification probably favoured interbreeding avoidance. Conversely, the aposematic wing pattern remained almost identical. We compared our results with those obtained in other species and concluded that Z. polyxena and Z. cassandra represent a valuable model in the study of speciation. Public Library of Science 2013-06-06 /pmc/articles/PMC3675026/ /pubmed/23755277 http://dx.doi.org/10.1371/journal.pone.0065746 Text en © 2013 Zinetti et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zinetti, Francesca Dapporto, Leonardo Vovlas, Alessio Chelazzi, Guido Bonelli, Simona Balletto, Emilio Ciofi, Claudio When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group |
title | When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group |
title_full | When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group |
title_fullStr | When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group |
title_full_unstemmed | When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group |
title_short | When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group |
title_sort | when the rule becomes the exception. no evidence of gene flow between two zerynthia cryptic butterflies suggests the emergence of a new model group |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675026/ https://www.ncbi.nlm.nih.gov/pubmed/23755277 http://dx.doi.org/10.1371/journal.pone.0065746 |
work_keys_str_mv | AT zinettifrancesca whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup AT dapportoleonardo whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup AT vovlasalessio whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup AT chelazziguido whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup AT bonellisimona whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup AT ballettoemilio whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup AT cioficlaudio whentherulebecomestheexceptionnoevidenceofgeneflowbetweentwozerynthiacrypticbutterfliessuggeststheemergenceofanewmodelgroup |