Cargando…
Enhancing Pancreatic Beta-Cell Regeneration In Vivo with Pioglitazone and Alogliptin
AIMS/HYPOTHESIS: Pancreatic beta-cells retain limited ability to regenerate and proliferate after various physiologic triggers. Identifying therapies that are able to enhance beta-cell regeneration may therefore be useful for the treatment of both type 1 and type 2 diabetes. METHODS: In this study w...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675063/ https://www.ncbi.nlm.nih.gov/pubmed/23762423 http://dx.doi.org/10.1371/journal.pone.0065777 |
Sumario: | AIMS/HYPOTHESIS: Pancreatic beta-cells retain limited ability to regenerate and proliferate after various physiologic triggers. Identifying therapies that are able to enhance beta-cell regeneration may therefore be useful for the treatment of both type 1 and type 2 diabetes. METHODS: In this study we investigated endogenous and transplanted beta-cell regeneration by serially quantifying changes in bioluminescence from beta-cells from transgenic mice expressing firefly luciferase under the control of the mouse insulin I promoter. We tested the ability of pioglitazone and alogliptin, two drugs developed for the treatment of type 2 diabetes, to enhance beta-cell regeneration, and also defined the effect of the immunosuppression with rapamycin and tacrolimus on transplanted islet beta mass. RESULTS: Pioglitazone is a stimulator of nuclear receptor peroxisome proliferator-activated receptor gamma while alogliptin is a selective dipeptidyl peptidase IV inhibitor. Pioglitazone alone, or in combination with alogliptin, enhanced endogenous beta-cell regeneration in streptozotocin-treated mice, while alogliptin alone had modest effects. In a model of syngeneic islet transplantation, immunosuppression with rapamycin and tacrolimus induced an early loss of beta-cell mass, while treatment with insulin implants to maintain normoglycemia and pioglitazone plus alogliptin was able to partially promote beta-cell mass recovery. CONCLUSIONS/INTERPRETATION: These data highlight the utility of bioluminescence for serially quantifying functional beta-cell mass in living mice. They also demonstrate the ability of pioglitazone, used either alone or in combination with alogliptin, to enhance regeneration of endogenous islet beta-cells as well as transplanted islets into recipients treated with rapamycin and tacrolimus. |
---|