Cargando…

Ecological Niche Modeling and Land Cover Risk Areas for Rift Valley Fever Vector, Culex tritaeniorhynchus Giles in Jazan, Saudi Arabia

BACKGROUND: The mosquito, Culex tritaeniorhynchus Giles is a prevalent and confirmed Rift Valley Fever virus (RVFV) vector. This vector, in association with Aedimorphus arabiensis (Patton), was responsible for causing the outbreak of 2000 in Jazan Province, Saudi Arabia. METHODOLOGY/PRINCIPAL FINDIN...

Descripción completa

Detalles Bibliográficos
Autores principales: Sallam, Mohamed F., Al Ahmed, Azzam M., Abdel-Dayem, Mahmoud S., Abdullah, Mohamed A. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675080/
https://www.ncbi.nlm.nih.gov/pubmed/23762424
http://dx.doi.org/10.1371/journal.pone.0065786
Descripción
Sumario:BACKGROUND: The mosquito, Culex tritaeniorhynchus Giles is a prevalent and confirmed Rift Valley Fever virus (RVFV) vector. This vector, in association with Aedimorphus arabiensis (Patton), was responsible for causing the outbreak of 2000 in Jazan Province, Saudi Arabia. METHODOLOGY/PRINCIPAL FINDINGS: Larval occurrence records and a total of 19 bioclimatic and three topographic layers imported from Worldclim Database were used to predict the larval suitable breeding habitats for this vector in Jazan Province using ArcGIS ver.10 and MaxEnt modeling program. Also, a supervised land cover classification from SPOT5 imagery was developed to assess the land cover distribution within the suitable predicted habitats. Eleven bioclimatic and slope attributes were found to be the significant predictors for this larval suitable breeding habitat. Precipitation and temperature were strong predictors of mosquito distribution. Among six land cover classes, the linear regression model (LM) indicated wet muddy substrate is significantly associated with high-very high suitable predicted habitats (R(2) = 73.7%, P<0.05). Also, LM indicated that total dissolved salts (TDS) was a significant contributor (R(2) = 23.9%, P<0.01) in determining mosquito larval abundance. CONCLUSION/SIGNIFICANCE: This model is a first step in understanding the spatial distribution of Cx. tritaeniorhynchus and consequently the risk of RVFV in Saudi Arabia and to assist in planning effective mosquito surveillance and control programs by public health personnel and researchers.