Cargando…
The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale
Neural stem cells (NSCs) are undifferentiated cells in the central nervous system (CNS) that are capable of self-renewal and can be induced to differentiate into neurons and glia. Current sources of mammalian NSCs are confined to regions of the CNS that are critical to normal function and surgically...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675200/ https://www.ncbi.nlm.nih.gov/pubmed/23762453 http://dx.doi.org/10.1371/journal.pone.0065974 |
_version_ | 1782272492004442112 |
---|---|
author | Jha, Ruchira M. Chrenek, Ryan Magnotti, Laura M. Cardozo, David L. |
author_facet | Jha, Ruchira M. Chrenek, Ryan Magnotti, Laura M. Cardozo, David L. |
author_sort | Jha, Ruchira M. |
collection | PubMed |
description | Neural stem cells (NSCs) are undifferentiated cells in the central nervous system (CNS) that are capable of self-renewal and can be induced to differentiate into neurons and glia. Current sources of mammalian NSCs are confined to regions of the CNS that are critical to normal function and surgically difficult to access, which limits their therapeutic potential in human disease. We have found that the filum terminale (FT), a previously unexplored, expendable, and easily accessible tissue at the caudal end of the spinal cord, is a source of multipotent cells in postnatal rats and humans. In this study, we used a rat model to isolate and characterize the potential of these cells. Neurospheres derived from the rat FT are amenable to in vitro expansion in the presence of a combination of growth factors. These proliferating, FT-derived cells formed neurospheres that could be induced to differentiate into neural progenitor cells, neurons, astrocytes, and oligodendrocytes by exposure to serum and/or adhesive substrates. Through directed differentiation using sonic hedgehog and retinoic acid in combination with various neurotrophic factors, FT-derived neurospheres generated motor neurons that were capable of forming neuromuscular junctions in vitro. In addition, FT-derived progenitors that were injected into chick embryos survived and could differentiate into both neurons and glia in vivo. |
format | Online Article Text |
id | pubmed-3675200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36752002013-06-12 The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale Jha, Ruchira M. Chrenek, Ryan Magnotti, Laura M. Cardozo, David L. PLoS One Research Article Neural stem cells (NSCs) are undifferentiated cells in the central nervous system (CNS) that are capable of self-renewal and can be induced to differentiate into neurons and glia. Current sources of mammalian NSCs are confined to regions of the CNS that are critical to normal function and surgically difficult to access, which limits their therapeutic potential in human disease. We have found that the filum terminale (FT), a previously unexplored, expendable, and easily accessible tissue at the caudal end of the spinal cord, is a source of multipotent cells in postnatal rats and humans. In this study, we used a rat model to isolate and characterize the potential of these cells. Neurospheres derived from the rat FT are amenable to in vitro expansion in the presence of a combination of growth factors. These proliferating, FT-derived cells formed neurospheres that could be induced to differentiate into neural progenitor cells, neurons, astrocytes, and oligodendrocytes by exposure to serum and/or adhesive substrates. Through directed differentiation using sonic hedgehog and retinoic acid in combination with various neurotrophic factors, FT-derived neurospheres generated motor neurons that were capable of forming neuromuscular junctions in vitro. In addition, FT-derived progenitors that were injected into chick embryos survived and could differentiate into both neurons and glia in vivo. Public Library of Science 2013-06-06 /pmc/articles/PMC3675200/ /pubmed/23762453 http://dx.doi.org/10.1371/journal.pone.0065974 Text en © 2013 Jha et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Jha, Ruchira M. Chrenek, Ryan Magnotti, Laura M. Cardozo, David L. The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale |
title | The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale
|
title_full | The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale
|
title_fullStr | The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale
|
title_full_unstemmed | The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale
|
title_short | The Isolation, Differentiation, and Survival In Vivo of Multipotent Cells from the Postnatal Rat filum terminale
|
title_sort | isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675200/ https://www.ncbi.nlm.nih.gov/pubmed/23762453 http://dx.doi.org/10.1371/journal.pone.0065974 |
work_keys_str_mv | AT jharuchiram theisolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT chrenekryan theisolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT magnottilauram theisolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT cardozodavidl theisolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT jharuchiram isolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT chrenekryan isolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT magnottilauram isolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale AT cardozodavidl isolationdifferentiationandsurvivalinvivoofmultipotentcellsfromthepostnatalratfilumterminale |