Cargando…
The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase
RbpA is a small non–DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675491/ https://www.ncbi.nlm.nih.gov/pubmed/23605043 http://dx.doi.org/10.1093/nar/gkt277 |
_version_ | 1782476102145409024 |
---|---|
author | Tabib-Salazar, Aline Liu, Bing Doughty, Philip Lewis, Richard A. Ghosh, Somadri Parsy, Marie-Laure Simpson, Peter J. O’Dwyer, Kathleen Matthews, Steve J. Paget, Mark S. |
author_facet | Tabib-Salazar, Aline Liu, Bing Doughty, Philip Lewis, Richard A. Ghosh, Somadri Parsy, Marie-Laure Simpson, Peter J. O’Dwyer, Kathleen Matthews, Steve J. Paget, Mark S. |
author_sort | Tabib-Salazar, Aline |
collection | PubMed |
description | RbpA is a small non–DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA–σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria. |
format | Online Article Text |
id | pubmed-3675491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36754912013-06-07 The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase Tabib-Salazar, Aline Liu, Bing Doughty, Philip Lewis, Richard A. Ghosh, Somadri Parsy, Marie-Laure Simpson, Peter J. O’Dwyer, Kathleen Matthews, Steve J. Paget, Mark S. Nucleic Acids Res Gene Regulation, Chromatin and Epigenetics RbpA is a small non–DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA–σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria. Oxford University Press 2013-06 2013-04-19 /pmc/articles/PMC3675491/ /pubmed/23605043 http://dx.doi.org/10.1093/nar/gkt277 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Gene Regulation, Chromatin and Epigenetics Tabib-Salazar, Aline Liu, Bing Doughty, Philip Lewis, Richard A. Ghosh, Somadri Parsy, Marie-Laure Simpson, Peter J. O’Dwyer, Kathleen Matthews, Steve J. Paget, Mark S. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase |
title | The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase |
title_full | The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase |
title_fullStr | The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase |
title_full_unstemmed | The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase |
title_short | The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase |
title_sort | actinobacterial transcription factor rbpa binds to the principal sigma subunit of rna polymerase |
topic | Gene Regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675491/ https://www.ncbi.nlm.nih.gov/pubmed/23605043 http://dx.doi.org/10.1093/nar/gkt277 |
work_keys_str_mv | AT tabibsalazaraline theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT liubing theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT doughtyphilip theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT lewisricharda theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT ghoshsomadri theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT parsymarielaure theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT simpsonpeterj theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT odwyerkathleen theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT matthewsstevej theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT pagetmarks theactinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT tabibsalazaraline actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT liubing actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT doughtyphilip actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT lewisricharda actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT ghoshsomadri actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT parsymarielaure actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT simpsonpeterj actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT odwyerkathleen actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT matthewsstevej actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase AT pagetmarks actinobacterialtranscriptionfactorrbpabindstotheprincipalsigmasubunitofrnapolymerase |