Cargando…
Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility
This paper presents the analysis of the electromyographic signals from rat stomachs to identify and classify contractions. The results were validated with both visual identification and an ultrasonic system to guarantee the reference. Some parameters were defined and associated to the energy of the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675526/ https://www.ncbi.nlm.nih.gov/pubmed/27879860 http://dx.doi.org/10.3390/s8052974 |
_version_ | 1782476109927940096 |
---|---|
author | Jiménez, Laura Ivoone Garay Rodríguez, Pablo Rogelio Hernández Guerrero, Roberto Muñoz Ramírez, Emma Gloria Ramos |
author_facet | Jiménez, Laura Ivoone Garay Rodríguez, Pablo Rogelio Hernández Guerrero, Roberto Muñoz Ramírez, Emma Gloria Ramos |
author_sort | Jiménez, Laura Ivoone Garay |
collection | PubMed |
description | This paper presents the analysis of the electromyographic signals from rat stomachs to identify and classify contractions. The results were validated with both visual identification and an ultrasonic system to guarantee the reference. Some parameters were defined and associated to the energy of the signal in frequency domain and grouped in a P vector. The parameters were statistically analyzed and according to the results, an artificial neuronal network was designed to use the P vectors as inputs to classify the electrical signals related to the contraction conditions. A first approach classification was performed with and without contraction classes (CR and NCR), then the same database were subdivided in four classes: with induced contraction (ICR), spontaneous contraction (SCR), without contraction due a post mortem condition (PMR) or under physiological conditions (PNCR). In a two-class classifier, performance was 86%, 93% and 91% of detections for each electrogastromyografic (EGMG) signal from each of three pairs of electrodes considered. Because in the four-class classifier, enough data was not collected for the first pair, then a three-class classifier with 82% of performance was used. For the other two EGMG signals electrode pairs, performance was of 76% and 86% respectively. Based in the results, the analysis of P vectors could be used as a contraction detector in motility studies due to different stimuli in a rat model. |
format | Online Article Text |
id | pubmed-3675526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-36755262013-06-19 Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility Jiménez, Laura Ivoone Garay Rodríguez, Pablo Rogelio Hernández Guerrero, Roberto Muñoz Ramírez, Emma Gloria Ramos Sensors (Basel) Article This paper presents the analysis of the electromyographic signals from rat stomachs to identify and classify contractions. The results were validated with both visual identification and an ultrasonic system to guarantee the reference. Some parameters were defined and associated to the energy of the signal in frequency domain and grouped in a P vector. The parameters were statistically analyzed and according to the results, an artificial neuronal network was designed to use the P vectors as inputs to classify the electrical signals related to the contraction conditions. A first approach classification was performed with and without contraction classes (CR and NCR), then the same database were subdivided in four classes: with induced contraction (ICR), spontaneous contraction (SCR), without contraction due a post mortem condition (PMR) or under physiological conditions (PNCR). In a two-class classifier, performance was 86%, 93% and 91% of detections for each electrogastromyografic (EGMG) signal from each of three pairs of electrodes considered. Because in the four-class classifier, enough data was not collected for the first pair, then a three-class classifier with 82% of performance was used. For the other two EGMG signals electrode pairs, performance was of 76% and 86% respectively. Based in the results, the analysis of P vectors could be used as a contraction detector in motility studies due to different stimuli in a rat model. Molecular Diversity Preservation International (MDPI) 2008-05-06 /pmc/articles/PMC3675526/ /pubmed/27879860 http://dx.doi.org/10.3390/s8052974 Text en © 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Jiménez, Laura Ivoone Garay Rodríguez, Pablo Rogelio Hernández Guerrero, Roberto Muñoz Ramírez, Emma Gloria Ramos Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility |
title | Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility |
title_full | Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility |
title_fullStr | Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility |
title_full_unstemmed | Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility |
title_short | Analysis of Electromyographic Signals from Rats' Stomaches for Detection and Classification of Motility |
title_sort | analysis of electromyographic signals from rats' stomaches for detection and classification of motility |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675526/ https://www.ncbi.nlm.nih.gov/pubmed/27879860 http://dx.doi.org/10.3390/s8052974 |
work_keys_str_mv | AT jimenezlauraivoonegaray analysisofelectromyographicsignalsfromratsstomachesfordetectionandclassificationofmotility AT rodriguezpablorogeliohernandez analysisofelectromyographicsignalsfromratsstomachesfordetectionandclassificationofmotility AT guerrerorobertomunoz analysisofelectromyographicsignalsfromratsstomachesfordetectionandclassificationofmotility AT ramirezemmagloriaramos analysisofelectromyographicsignalsfromratsstomachesfordetectionandclassificationofmotility |