Cargando…
Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots
This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675559/ https://www.ncbi.nlm.nih.gov/pubmed/27879893 http://dx.doi.org/10.3390/s8053557 |
_version_ | 1782476117157871616 |
---|---|
author | Lelong, Camille C. D. Burger, Philippe Jubelin, Guillaume Roux, Bruno Labbé, Sylvain Baret, Frédéric |
author_facet | Lelong, Camille C. D. Burger, Philippe Jubelin, Guillaume Roux, Bruno Labbé, Sylvain Baret, Frédéric |
author_sort | Lelong, Camille C. D. |
collection | PubMed |
description | This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships. |
format | Online Article Text |
id | pubmed-3675559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-36755592013-06-19 Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots Lelong, Camille C. D. Burger, Philippe Jubelin, Guillaume Roux, Bruno Labbé, Sylvain Baret, Frédéric Sensors (Basel) Article This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships. Molecular Diversity Preservation International (MDPI) 2008-05-26 /pmc/articles/PMC3675559/ /pubmed/27879893 http://dx.doi.org/10.3390/s8053557 Text en © 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Lelong, Camille C. D. Burger, Philippe Jubelin, Guillaume Roux, Bruno Labbé, Sylvain Baret, Frédéric Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots |
title | Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots |
title_full | Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots |
title_fullStr | Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots |
title_full_unstemmed | Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots |
title_short | Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots |
title_sort | assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675559/ https://www.ncbi.nlm.nih.gov/pubmed/27879893 http://dx.doi.org/10.3390/s8053557 |
work_keys_str_mv | AT lelongcamillecd assessmentofunmannedaerialvehiclesimageryforquantitativemonitoringofwheatcropinsmallplots AT burgerphilippe assessmentofunmannedaerialvehiclesimageryforquantitativemonitoringofwheatcropinsmallplots AT jubelinguillaume assessmentofunmannedaerialvehiclesimageryforquantitativemonitoringofwheatcropinsmallplots AT rouxbruno assessmentofunmannedaerialvehiclesimageryforquantitativemonitoringofwheatcropinsmallplots AT labbesylvain assessmentofunmannedaerialvehiclesimageryforquantitativemonitoringofwheatcropinsmallplots AT baretfrederic assessmentofunmannedaerialvehiclesimageryforquantitativemonitoringofwheatcropinsmallplots |