Cargando…

Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation

Noninvasive brain stimulation has shown considerable promise for enhancing cognitive functions by the long-term manipulation of neuroplasticity [1–3]. However, the observation of such improvements has been focused at the behavioral level, and enhancements largely restricted to the performance of bas...

Descripción completa

Detalles Bibliográficos
Autores principales: Snowball, Albert, Tachtsidis, Ilias, Popescu, Tudor, Thompson, Jacqueline, Delazer, Margarete, Zamarian, Laura, Zhu, Tingting, Cohen Kadosh, Roi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675670/
https://www.ncbi.nlm.nih.gov/pubmed/23684971
http://dx.doi.org/10.1016/j.cub.2013.04.045
Descripción
Sumario:Noninvasive brain stimulation has shown considerable promise for enhancing cognitive functions by the long-term manipulation of neuroplasticity [1–3]. However, the observation of such improvements has been focused at the behavioral level, and enhancements largely restricted to the performance of basic tasks. Here, we investigate whether transcranial random noise stimulation (TRNS) can improve learning and subsequent performance on complex arithmetic tasks. TRNS of the bilateral dorsolateral prefrontal cortex (DLPFC), a key area in arithmetic [4, 5], was uniquely coupled with near-infrared spectroscopy (NIRS) to measure online hemodynamic responses within the prefrontal cortex. Five consecutive days of TRNS-accompanied cognitive training enhanced the speed of both calculation- and memory-recall-based arithmetic learning. These behavioral improvements were associated with defined hemodynamic responses consistent with more efficient neurovascular coupling within the left DLPFC. Testing 6 months after training revealed long-lasting behavioral and physiological modifications in the stimulated group relative to sham controls for trained and nontrained calculation material. These results demonstrate that, depending on the learning regime, TRNS can induce long-term enhancement of cognitive and brain functions. Such findings have significant implications for basic and translational neuroscience, highlighting TRNS as a viable approach to enhancing learning and high-level cognition by the long-term modulation of neuroplasticity.