Cargando…

Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing

In this paper, the effects of two-dimensional correlation spectroscopy (2DCOS) on chance correlations in the spectral data, generated from the correlations between glucose concentration and some undesirable experimental factors, such as instrument drift, sample temperature variations, and interferen...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wanjie, Liu, Rong, Zhang, Wen, Jia, Hao, Xu, Kexin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675860/
https://www.ncbi.nlm.nih.gov/pubmed/23761844
http://dx.doi.org/10.1364/BOE.4.000789
Descripción
Sumario:In this paper, the effects of two-dimensional correlation spectroscopy (2DCOS) on chance correlations in the spectral data, generated from the correlations between glucose concentration and some undesirable experimental factors, such as instrument drift, sample temperature variations, and interferent compositions in the sample matrix, are investigated. The aim is to evaluate the validity of the spectral data set, instead of assessing the calibration models, and then to provide a complementary procedure for better verifying or rejecting the data set. It includes tracing back to the source of the chance correlation on the chemical basis, selecting appropriate preprocessing methods before building multivariate calibration models, and therefore may avoid invalid models. The utility of the proposed analysis is demonstrated with a series of aqueous solutions using near-infrared spectra over the overtone band of glucose. Results show that, spectral variations from chance correlations induced by those experimental factors can be determined by the 2DCOS method, which develops avenues for prospectively accurate prediction in clinical application of this technology.