Cargando…

Automatic cone photoreceptor segmentation using graph theory and dynamic programming

Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previousl...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiu, Stephanie J., Lokhnygina, Yuliya, Dubis, Adam M., Dubra, Alfredo, Carroll, Joseph, Izatt, Joseph A., Farsiu, Sina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675871/
https://www.ncbi.nlm.nih.gov/pubmed/23761854
http://dx.doi.org/10.1364/BOE.4.000924
_version_ 1782272609059078144
author Chiu, Stephanie J.
Lokhnygina, Yuliya
Dubis, Adam M.
Dubra, Alfredo
Carroll, Joseph
Izatt, Joseph A.
Farsiu, Sina
author_facet Chiu, Stephanie J.
Lokhnygina, Yuliya
Dubis, Adam M.
Dubra, Alfredo
Carroll, Joseph
Izatt, Joseph A.
Farsiu, Sina
author_sort Chiu, Stephanie J.
collection PubMed
description Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five.
format Online
Article
Text
id pubmed-3675871
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-36758712013-06-11 Automatic cone photoreceptor segmentation using graph theory and dynamic programming Chiu, Stephanie J. Lokhnygina, Yuliya Dubis, Adam M. Dubra, Alfredo Carroll, Joseph Izatt, Joseph A. Farsiu, Sina Biomed Opt Express Research-Article Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five. Optical Society of America 2013-05-22 /pmc/articles/PMC3675871/ /pubmed/23761854 http://dx.doi.org/10.1364/BOE.4.000924 Text en ©2013 Optical Society of America author-open
spellingShingle Research-Article
Chiu, Stephanie J.
Lokhnygina, Yuliya
Dubis, Adam M.
Dubra, Alfredo
Carroll, Joseph
Izatt, Joseph A.
Farsiu, Sina
Automatic cone photoreceptor segmentation using graph theory and dynamic programming
title Automatic cone photoreceptor segmentation using graph theory and dynamic programming
title_full Automatic cone photoreceptor segmentation using graph theory and dynamic programming
title_fullStr Automatic cone photoreceptor segmentation using graph theory and dynamic programming
title_full_unstemmed Automatic cone photoreceptor segmentation using graph theory and dynamic programming
title_short Automatic cone photoreceptor segmentation using graph theory and dynamic programming
title_sort automatic cone photoreceptor segmentation using graph theory and dynamic programming
topic Research-Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675871/
https://www.ncbi.nlm.nih.gov/pubmed/23761854
http://dx.doi.org/10.1364/BOE.4.000924
work_keys_str_mv AT chiustephaniej automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming
AT lokhnyginayuliya automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming
AT dubisadamm automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming
AT dubraalfredo automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming
AT carrolljoseph automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming
AT izattjosepha automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming
AT farsiusina automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming