Cargando…
Automatic cone photoreceptor segmentation using graph theory and dynamic programming
Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previousl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675871/ https://www.ncbi.nlm.nih.gov/pubmed/23761854 http://dx.doi.org/10.1364/BOE.4.000924 |
_version_ | 1782272609059078144 |
---|---|
author | Chiu, Stephanie J. Lokhnygina, Yuliya Dubis, Adam M. Dubra, Alfredo Carroll, Joseph Izatt, Joseph A. Farsiu, Sina |
author_facet | Chiu, Stephanie J. Lokhnygina, Yuliya Dubis, Adam M. Dubra, Alfredo Carroll, Joseph Izatt, Joseph A. Farsiu, Sina |
author_sort | Chiu, Stephanie J. |
collection | PubMed |
description | Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five. |
format | Online Article Text |
id | pubmed-3675871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Optical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-36758712013-06-11 Automatic cone photoreceptor segmentation using graph theory and dynamic programming Chiu, Stephanie J. Lokhnygina, Yuliya Dubis, Adam M. Dubra, Alfredo Carroll, Joseph Izatt, Joseph A. Farsiu, Sina Biomed Opt Express Research-Article Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five. Optical Society of America 2013-05-22 /pmc/articles/PMC3675871/ /pubmed/23761854 http://dx.doi.org/10.1364/BOE.4.000924 Text en ©2013 Optical Society of America author-open |
spellingShingle | Research-Article Chiu, Stephanie J. Lokhnygina, Yuliya Dubis, Adam M. Dubra, Alfredo Carroll, Joseph Izatt, Joseph A. Farsiu, Sina Automatic cone photoreceptor segmentation using graph theory and dynamic programming |
title | Automatic cone photoreceptor segmentation using graph theory and dynamic programming |
title_full | Automatic cone photoreceptor segmentation using graph theory and dynamic programming |
title_fullStr | Automatic cone photoreceptor segmentation using graph theory and dynamic programming |
title_full_unstemmed | Automatic cone photoreceptor segmentation using graph theory and dynamic programming |
title_short | Automatic cone photoreceptor segmentation using graph theory and dynamic programming |
title_sort | automatic cone photoreceptor segmentation using graph theory and dynamic programming |
topic | Research-Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675871/ https://www.ncbi.nlm.nih.gov/pubmed/23761854 http://dx.doi.org/10.1364/BOE.4.000924 |
work_keys_str_mv | AT chiustephaniej automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming AT lokhnyginayuliya automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming AT dubisadamm automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming AT dubraalfredo automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming AT carrolljoseph automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming AT izattjosepha automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming AT farsiusina automaticconephotoreceptorsegmentationusinggraphtheoryanddynamicprogramming |