Cargando…
Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae
Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E (GSH)) was measured using the fluorescent probes roGFP2 an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676407/ https://www.ncbi.nlm.nih.gov/pubmed/23762325 http://dx.doi.org/10.1371/journal.pone.0065240 |
_version_ | 1782272635679277056 |
---|---|
author | Ayer, Anita Sanwald, Julia Pillay, Bethany A. Meyer, Andreas J. Perrone, Gabriel G. Dawes, Ian W. |
author_facet | Ayer, Anita Sanwald, Julia Pillay, Bethany A. Meyer, Andreas J. Perrone, Gabriel G. Dawes, Ian W. |
author_sort | Ayer, Anita |
collection | PubMed |
description | Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E (GSH)) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E (GSH) values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. |
format | Online Article Text |
id | pubmed-3676407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36764072013-06-12 Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae Ayer, Anita Sanwald, Julia Pillay, Bethany A. Meyer, Andreas J. Perrone, Gabriel G. Dawes, Ian W. PLoS One Research Article Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E (GSH)) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E (GSH) values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. Public Library of Science 2013-06-07 /pmc/articles/PMC3676407/ /pubmed/23762325 http://dx.doi.org/10.1371/journal.pone.0065240 Text en © 2013 Ayer et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ayer, Anita Sanwald, Julia Pillay, Bethany A. Meyer, Andreas J. Perrone, Gabriel G. Dawes, Ian W. Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae |
title | Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae
|
title_full | Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae
|
title_fullStr | Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae
|
title_full_unstemmed | Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae
|
title_short | Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae
|
title_sort | distinct redox regulation in sub-cellular compartments in response to various stress conditions in saccharomyces cerevisiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676407/ https://www.ncbi.nlm.nih.gov/pubmed/23762325 http://dx.doi.org/10.1371/journal.pone.0065240 |
work_keys_str_mv | AT ayeranita distinctredoxregulationinsubcellularcompartmentsinresponsetovariousstressconditionsinsaccharomycescerevisiae AT sanwaldjulia distinctredoxregulationinsubcellularcompartmentsinresponsetovariousstressconditionsinsaccharomycescerevisiae AT pillaybethanya distinctredoxregulationinsubcellularcompartmentsinresponsetovariousstressconditionsinsaccharomycescerevisiae AT meyerandreasj distinctredoxregulationinsubcellularcompartmentsinresponsetovariousstressconditionsinsaccharomycescerevisiae AT perronegabrielg distinctredoxregulationinsubcellularcompartmentsinresponsetovariousstressconditionsinsaccharomycescerevisiae AT dawesianw distinctredoxregulationinsubcellularcompartmentsinresponsetovariousstressconditionsinsaccharomycescerevisiae |