Cargando…

Phylogeography and Genetic Differentiation among Populations of the Moon Turban Snail Lunella granulata Gmelin, 1791 (Gastropoda: Turbinidae)

We examined the genetic variation and phylogeographic relationships among 10 populations of Lunella granulata from mainland China, Penghu Archipelago, Taiwan Island, and Japan using mitochondrial COI and 16S markers. A total of 45 haplotypes were obtained in 112 specimens, and relatively high levels...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiu, Yuh-Wen, Bor, Hor, Tan, Mian-Shin, Lin, Hung-Du, Jean, Chuen-Tan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676773/
https://www.ncbi.nlm.nih.gov/pubmed/23698764
http://dx.doi.org/10.3390/ijms14059062
Descripción
Sumario:We examined the genetic variation and phylogeographic relationships among 10 populations of Lunella granulata from mainland China, Penghu Archipelago, Taiwan Island, and Japan using mitochondrial COI and 16S markers. A total of 45 haplotypes were obtained in 112 specimens, and relatively high levels of haplotype diversity (h = 0.903) and low levels of nucleotide diversity (π = 0.0046) were detected. Four major phylogenetic lineage clusters were revealed and were concordant with their geographic distribution, agreeing with the haplotype network. These results suggested that geographic barrier isolating effects were occurring among the populations. This hypothesis was also supported by a significant genetic differentiation index (F(ST) = 0.709) and by a spatial analysis of molecular variance (SAMOVA) analysis. A mismatch distribution analysis, neutrality tests and Bayesian skyline plots found a single significant population expansion. This expansion occurred on the coast of mainland China before 20–17 ka. Consequently, although the dispersal ability of the planktonic stage and the circulation of ocean currents generally promote genetic exchanges among populations, L. granulata has tended to maintain distinct genetic groups that reflect the respective geographic origins of the constituent lineages. Although the circulation of ocean currents, in principle, may still play a role in determining the genetic composition of populations, long-distance migration between regions is difficult even at the planktonic stage.