Cargando…

Experimental evaluation of xenodiagnosis to detect trypanosomes at low parasitaemia levels in infected hosts

In Human African Trypanosomosis (HAT) endemic areas, there are a number of subjects that are positive to serological tests but in whom trypanosomes are difficult to detect with the available parasitological tests. In most cases and particularly in West Africa, these subjects remain untreated, thus p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wombou Toukam, C.M., Solano, P., Bengaly, Z., Jamonneau, V., Bucheton, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: EDP Sciences 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677595/
https://www.ncbi.nlm.nih.gov/pubmed/22091459
http://dx.doi.org/10.1051/parasite/2011184295
Descripción
Sumario:In Human African Trypanosomosis (HAT) endemic areas, there are a number of subjects that are positive to serological tests but in whom trypanosomes are difficult to detect with the available parasitological tests. In most cases and particularly in West Africa, these subjects remain untreated, thus posing a fundamental problem both at the individual level (because of a possible lethal evolution of the disease) and at the epidemiological level (since they are potential reservoirs of trypanosomes). Xenodiagnosis may constitute an alternative for this type of cases. The objective of this study was to update the use of xenodiagnosis to detect trypanosomes in infected host characterized by low parasitaemia levels. This was carried out experimentally by infecting cattle and pigs with Trypanosoma congolense and T. brucei gambiense respectively, and by feeding tsetse flies (Glossina morsitans submorsitans and G. palpalis gambiensis, from the CIRDES colonies) on these animals at a time when the observed blood parasitaemia were low or undetectable by the classical microscopic parasitological tests used for the monitoring of infected animals. Our results showed that: i) the G. p. gambiensis colony at CIRDES could not be infected with the T. b. gambiense stocks used; ii) midgut infections of G. m. submorsitans were observed with both T. congolense and T. b. gambiense; iii) xenodiagnosis remains positive even at very low blood parasitaemia for both T. congolense and T. b. gambiense; and iv) to implement T. b. gambiense xenodiagnosis, batches of 20 G. m. submorsitans should be dissected two days after the infective meal. These results constitute a first step toward a possible implementation of xenodiagnosis to better characterize the parasitological status of seropositive individuals and the modalities of parasite transmission in HAT foci.