Cargando…

GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI

We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary...

Descripción completa

Detalles Bibliográficos
Autores principales: Swastika, Windra, Masuda, Yoshitada, Xu, Rui, Kido, Shoji, Chen, Yen-Wei, Haneishi, Hideaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677614/
https://www.ncbi.nlm.nih.gov/pubmed/23781274
http://dx.doi.org/10.1155/2013/482941
_version_ 1782272745503981568
author Swastika, Windra
Masuda, Yoshitada
Xu, Rui
Kido, Shoji
Chen, Yen-Wei
Haneishi, Hideaki
author_facet Swastika, Windra
Masuda, Yoshitada
Xu, Rui
Kido, Shoji
Chen, Yen-Wei
Haneishi, Hideaki
author_sort Swastika, Windra
collection PubMed
description We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.
format Online
Article
Text
id pubmed-3677614
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-36776142013-06-18 GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI Swastika, Windra Masuda, Yoshitada Xu, Rui Kido, Shoji Chen, Yen-Wei Haneishi, Hideaki Comput Math Methods Med Research Article We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples. Hindawi Publishing Corporation 2013 2013-05-26 /pmc/articles/PMC3677614/ /pubmed/23781274 http://dx.doi.org/10.1155/2013/482941 Text en Copyright © 2013 Windra Swastika et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Swastika, Windra
Masuda, Yoshitada
Xu, Rui
Kido, Shoji
Chen, Yen-Wei
Haneishi, Hideaki
GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
title GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
title_full GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
title_fullStr GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
title_full_unstemmed GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
title_short GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
title_sort gnd-pca-based statistical modeling of diaphragm motion extracted from 4d mri
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677614/
https://www.ncbi.nlm.nih.gov/pubmed/23781274
http://dx.doi.org/10.1155/2013/482941
work_keys_str_mv AT swastikawindra gndpcabasedstatisticalmodelingofdiaphragmmotionextractedfrom4dmri
AT masudayoshitada gndpcabasedstatisticalmodelingofdiaphragmmotionextractedfrom4dmri
AT xurui gndpcabasedstatisticalmodelingofdiaphragmmotionextractedfrom4dmri
AT kidoshoji gndpcabasedstatisticalmodelingofdiaphragmmotionextractedfrom4dmri
AT chenyenwei gndpcabasedstatisticalmodelingofdiaphragmmotionextractedfrom4dmri
AT haneishihideaki gndpcabasedstatisticalmodelingofdiaphragmmotionextractedfrom4dmri