Cargando…

Antidiabetic Activity of Polysaccharides from Tuberous Root of Liriope spicata var. prolifera in KKAy Mice

Tuberous root of Liriope spicata var. prolifera has been widely used as a traditional Chinese medicine for the treatment of diabetes. The present study investigated the antidiabetic effect and the potential mechanisms of two new polysaccharides (LSP1, LSP2) and the total polysaccharides (TLSP), isol...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yihui, Wan, Luosheng, Xiao, Zuoqi, Wang, Jingjing, Wang, Yonglong, Chen, Jiachun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677662/
https://www.ncbi.nlm.nih.gov/pubmed/23762123
http://dx.doi.org/10.1155/2013/349790
Descripción
Sumario:Tuberous root of Liriope spicata var. prolifera has been widely used as a traditional Chinese medicine for the treatment of diabetes. The present study investigated the antidiabetic effect and the potential mechanisms of two new polysaccharides (LSP1, LSP2) and the total polysaccharides (TLSP), isolated from the tuberous roots. Upon the intragastric administration in obese insulin-resistant diabetic KKAy mice for 28 days, TLSP, LSP1, and LSP2 all caused a remarkable decrease of fasting blood glucose and significant improvement of insulin resistance and serum lipid metabolism in diabetic mice. In addition, liver histological analysis showed that TLSP, LSP1, and LSP2 significantly ameliorated the hepatocyte hypertrophy and decreased the lipid accumulation in the mice liver. Further experiments suggested that TLSP, LSP1, and LSP2 effectively inhibited hepatic gluconeogenesis and increased hepatic glycolysis and hepatic glycogen content. Furthermore, the mechanistic analysis showed the increased expression of insulin-receptor α subunit, insulin-receptor substrate-1, phosphatidylinositol 3-kinase, and peroxisome proliferators-activated receptors γ. These results suggested that TLSP, LSP1, and LSP2 manifest strong antidiabetic activity, therefore hold a great promise for therapeutic application in diabetic therapy and other related metabolic disorders.