Cargando…
Pharmacological Activation of Sirt1 Ameliorates Polyglutamine-Induced Toxicity through the Regulation of Autophagy
Intracellular accumulation of polyglutamine (polyQ)-expanded Huntingtin (Htt) protein is a hallmark of Huntington’s disease (HD). This study evaluated whether activation of Sirt1 by the anti-cancer agent, β-lapachone (β-lap), induces autophagy in human neuroblastoma SH-SY5Y cells, thereby reducing i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677867/ https://www.ncbi.nlm.nih.gov/pubmed/23762270 http://dx.doi.org/10.1371/journal.pone.0064953 |
Sumario: | Intracellular accumulation of polyglutamine (polyQ)-expanded Huntingtin (Htt) protein is a hallmark of Huntington’s disease (HD). This study evaluated whether activation of Sirt1 by the anti-cancer agent, β-lapachone (β-lap), induces autophagy in human neuroblastoma SH-SY5Y cells, thereby reducing intracellular levels of polyQ aggregates and their concomitant cytotoxicity. Treatment of cells with β-lap markedly diminished the cytotoxicity induced by forced expression of Htt exon 1 containing a pathogenic polyQ stretch fused to green fluorescent protein (HttEx1(97Q)-GFP). β-lap increased autophagy in SH-SY5Y cells, as evidenced by the increased formation of LC3-II and autolysosomes. Furthermore, β-lap reduced HttEx1(97Q)-GFP aggregation, which was significantly prevented by co-incubation with 3-methyladenine, an inhibitor of autophagy. β-lap increased Sirt1 activity, as shown by the increased deacetylation of the Sirt1 substrates, PARP-1 and Atg5, and the nuclear translocation of FOXO1. Both the induction of autophagy and attenuation of HttEx1(97Q)-GFP aggregation by β-lap were significantly prevented by co-incubation with sirtinol, a general sirtuin inhibitor or by co-transfection with shRNA against Sirt1. The pro-autophagic actions of β-lap were further investigated in a transgenic Caenorhabditis elegans (C. elegans) line that expressed Q67 fused to cyanine fluorescent protein (Q67). Notably, β-lap reduced the number of Q67 puncta and restored Q67-induced defects in motility, which were largely prevented by pre-treatment with RNAi against sir-2.1, the C. elegans orthologue of Sirt1. Collectively, these data suggest that β-lap induces autophagy through activation of Sirt1, which in turn leads to a reduction in polyQ aggregation and cellular toxicity. Thus, β-lap provides a novel therapeutic opportunity for the treatment of HD. |
---|