Cargando…
Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis
Schizophrenia (SZ) is a biochemically complex disorder characterized by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to examine. Rather, evidence for these alterations has been collected piecemeal, limiting the potential to inform...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678099/ https://www.ncbi.nlm.nih.gov/pubmed/23781173 http://dx.doi.org/10.3389/fncel.2013.00090 |
_version_ | 1782272806380109824 |
---|---|
author | Yao, Jeffrey K. Dougherty, George G. Reddy, Ravinder D. Matson, Wayne R. Kaddurah-Daouk, Rima Keshavan, Matcheri S. |
author_facet | Yao, Jeffrey K. Dougherty, George G. Reddy, Ravinder D. Matson, Wayne R. Kaddurah-Daouk, Rima Keshavan, Matcheri S. |
author_sort | Yao, Jeffrey K. |
collection | PubMed |
description | Schizophrenia (SZ) is a biochemically complex disorder characterized by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to examine. Rather, evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions amongst relevant biochemical pathways. We herein review perturbations in purine and neurotransmitter metabolism observed in early SZ using a metabolomic approach. Purine catabolism is an underappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. We have observed a homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with SZ (FENNS). Precursor and product relationships within purine pathways are tightly correlated. Although some of these correlations persist across disease or medication status, others appear to be lost among FENNS suggesting that steady formation of the antioxidant uric acid (UA) via purine catabolism is altered early in the course of illness. As is the case for within-pathway correlations, there are also significant cross-pathway correlations between respective purine and tryptophan (TRP) pathway metabolites. By contrast, purine metabolites show significant cross-pathway correlation only with tyrosine, and not with its metabolites. Furthermore, several purine metabolites (UA, guanosine, or xanthine) are each significantly correlated with 5-hydroxyindoleacetic acid (5-HIAA) in healthy controls, but not in FENNS at baseline or 4-week after antipsychotic treatment. Taken together, the above findings suggest that purine catabolism strongly associates with the TRP pathways leading to serotonin (5-hydroxytryptamine, 5-HT) and kynurenine metabolites. The lack of a significant correlation between purine metabolites and 5-HIAA, suggests alterations in key 5-HT pathways that may both be modified by and contribute to oxidative stress via purine catabolism in FENNS. |
format | Online Article Text |
id | pubmed-3678099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-36780992013-06-18 Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis Yao, Jeffrey K. Dougherty, George G. Reddy, Ravinder D. Matson, Wayne R. Kaddurah-Daouk, Rima Keshavan, Matcheri S. Front Cell Neurosci Neuroscience Schizophrenia (SZ) is a biochemically complex disorder characterized by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to examine. Rather, evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions amongst relevant biochemical pathways. We herein review perturbations in purine and neurotransmitter metabolism observed in early SZ using a metabolomic approach. Purine catabolism is an underappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. We have observed a homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with SZ (FENNS). Precursor and product relationships within purine pathways are tightly correlated. Although some of these correlations persist across disease or medication status, others appear to be lost among FENNS suggesting that steady formation of the antioxidant uric acid (UA) via purine catabolism is altered early in the course of illness. As is the case for within-pathway correlations, there are also significant cross-pathway correlations between respective purine and tryptophan (TRP) pathway metabolites. By contrast, purine metabolites show significant cross-pathway correlation only with tyrosine, and not with its metabolites. Furthermore, several purine metabolites (UA, guanosine, or xanthine) are each significantly correlated with 5-hydroxyindoleacetic acid (5-HIAA) in healthy controls, but not in FENNS at baseline or 4-week after antipsychotic treatment. Taken together, the above findings suggest that purine catabolism strongly associates with the TRP pathways leading to serotonin (5-hydroxytryptamine, 5-HT) and kynurenine metabolites. The lack of a significant correlation between purine metabolites and 5-HIAA, suggests alterations in key 5-HT pathways that may both be modified by and contribute to oxidative stress via purine catabolism in FENNS. Frontiers Media S.A. 2013-06-11 /pmc/articles/PMC3678099/ /pubmed/23781173 http://dx.doi.org/10.3389/fncel.2013.00090 Text en Copyright © Yao, Dougherty, Reddy, Matson, Kaddurah-Daouk and Keshavan. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Yao, Jeffrey K. Dougherty, George G. Reddy, Ravinder D. Matson, Wayne R. Kaddurah-Daouk, Rima Keshavan, Matcheri S. Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
title | Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
title_full | Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
title_fullStr | Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
title_full_unstemmed | Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
title_short | Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
title_sort | associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678099/ https://www.ncbi.nlm.nih.gov/pubmed/23781173 http://dx.doi.org/10.3389/fncel.2013.00090 |
work_keys_str_mv | AT yaojeffreyk associationsbetweenpurinemetabolitesandmonoamineneurotransmittersinfirstepisodepsychosis AT doughertygeorgeg associationsbetweenpurinemetabolitesandmonoamineneurotransmittersinfirstepisodepsychosis AT reddyravinderd associationsbetweenpurinemetabolitesandmonoamineneurotransmittersinfirstepisodepsychosis AT matsonwayner associationsbetweenpurinemetabolitesandmonoamineneurotransmittersinfirstepisodepsychosis AT kaddurahdaoukrima associationsbetweenpurinemetabolitesandmonoamineneurotransmittersinfirstepisodepsychosis AT keshavanmatcheris associationsbetweenpurinemetabolitesandmonoamineneurotransmittersinfirstepisodepsychosis |