Cargando…

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave...

Descripción completa

Detalles Bibliográficos
Autores principales: Rath, Patrik, Khasminskaya, Svetlana, Nebel, Christoph, Wild, Christoph, Pernice, Wolfram HP
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678405/
https://www.ncbi.nlm.nih.gov/pubmed/23766953
http://dx.doi.org/10.3762/bjnano.4.33
Descripción
Sumario:Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using efficient grating coupling devices prepared from partially etched diamond thin films, we investigate millimetre-sized optical circuits and achieve single-mode waveguiding at telecoms wavelengths. Our results pave the way towards broadband optical applications for sensing in harsh environments and visible photonic devices.