Cargando…
Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress
Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678485/ https://www.ncbi.nlm.nih.gov/pubmed/23762517 http://dx.doi.org/10.1002/ece3.551 |
_version_ | 1782272862471585792 |
---|---|
author | Harrison, Jon F Cease, Arianne J VandenBrooks, John M Albert, Todd Davidowitz, Goggy |
author_facet | Harrison, Jon F Cease, Arianne J VandenBrooks, John M Albert, Todd Davidowitz, Goggy |
author_sort | Harrison, Jon F |
collection | PubMed |
description | Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large-selected (big-fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small-fast) or an unselected control line. Individuals from the big-fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size. |
format | Online Article Text |
id | pubmed-3678485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-36784852013-06-12 Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress Harrison, Jon F Cease, Arianne J VandenBrooks, John M Albert, Todd Davidowitz, Goggy Ecol Evol Original Research Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large-selected (big-fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small-fast) or an unselected control line. Individuals from the big-fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size. Blackwell Publishing Ltd 2013-05 2013-04-08 /pmc/articles/PMC3678485/ /pubmed/23762517 http://dx.doi.org/10.1002/ece3.551 Text en © 2013 Published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Harrison, Jon F Cease, Arianne J VandenBrooks, John M Albert, Todd Davidowitz, Goggy Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
title | Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
title_full | Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
title_fullStr | Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
title_full_unstemmed | Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
title_short | Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
title_sort | caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678485/ https://www.ncbi.nlm.nih.gov/pubmed/23762517 http://dx.doi.org/10.1002/ece3.551 |
work_keys_str_mv | AT harrisonjonf caterpillarsselectedforlargebodysizeandshortdevelopmenttimearemoresusceptibletooxygenrelatedstress AT ceaseariannej caterpillarsselectedforlargebodysizeandshortdevelopmenttimearemoresusceptibletooxygenrelatedstress AT vandenbrooksjohnm caterpillarsselectedforlargebodysizeandshortdevelopmenttimearemoresusceptibletooxygenrelatedstress AT alberttodd caterpillarsselectedforlargebodysizeandshortdevelopmenttimearemoresusceptibletooxygenrelatedstress AT davidowitzgoggy caterpillarsselectedforlargebodysizeandshortdevelopmenttimearemoresusceptibletooxygenrelatedstress |