Cargando…
Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal
The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important interti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678489/ https://www.ncbi.nlm.nih.gov/pubmed/23762521 http://dx.doi.org/10.1002/ece3.541 |
_version_ | 1782272863380701184 |
---|---|
author | Jueterbock, Alexander Tyberghein, Lennert Verbruggen, Heroen Coyer, James A Olsen, Jeanine L Hoarau, Galice |
author_facet | Jueterbock, Alexander Tyberghein, Lennert Verbruggen, Heroen Coyer, James A Olsen, Jeanine L Hoarau, Galice |
author_sort | Jueterbock, Alexander |
collection | PubMed |
description | The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem. |
format | Online Article Text |
id | pubmed-3678489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-36784892013-06-12 Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal Jueterbock, Alexander Tyberghein, Lennert Verbruggen, Heroen Coyer, James A Olsen, Jeanine L Hoarau, Galice Ecol Evol Original Research The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem. Blackwell Publishing Ltd 2013-05 2013-04-12 /pmc/articles/PMC3678489/ /pubmed/23762521 http://dx.doi.org/10.1002/ece3.541 Text en © 2013 Published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Jueterbock, Alexander Tyberghein, Lennert Verbruggen, Heroen Coyer, James A Olsen, Jeanine L Hoarau, Galice Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal |
title | Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal |
title_full | Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal |
title_fullStr | Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal |
title_full_unstemmed | Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal |
title_short | Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal |
title_sort | climate change impact on seaweed meadow distribution in the north atlantic rocky intertidal |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678489/ https://www.ncbi.nlm.nih.gov/pubmed/23762521 http://dx.doi.org/10.1002/ece3.541 |
work_keys_str_mv | AT jueterbockalexander climatechangeimpactonseaweedmeadowdistributioninthenorthatlanticrockyintertidal AT tybergheinlennert climatechangeimpactonseaweedmeadowdistributioninthenorthatlanticrockyintertidal AT verbruggenheroen climatechangeimpactonseaweedmeadowdistributioninthenorthatlanticrockyintertidal AT coyerjamesa climatechangeimpactonseaweedmeadowdistributioninthenorthatlanticrockyintertidal AT olsenjeaninel climatechangeimpactonseaweedmeadowdistributioninthenorthatlanticrockyintertidal AT hoaraugalice climatechangeimpactonseaweedmeadowdistributioninthenorthatlanticrockyintertidal |