Cargando…
Quantifying local heterogeneity via morphologic scale: Distinguishing tumoral from stromal regions
INTRODUCTION: The notion of local scale was introduced to characterize varying levels of image detail so that localized image processing tasks could be performed while simultaneously yielding a globally optimal result. In this paper, we have presented the methodological framework for a novel locally...
Autores principales: | Janowczyk, Andrew, Chandran, Sharat, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678744/ https://www.ncbi.nlm.nih.gov/pubmed/23766944 http://dx.doi.org/10.4103/2153-3539.109865 |
Ejemplares similares
-
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
por: Janowczyk, Andrew, et al.
Publicado: (2016) -
Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis
por: Chen, Yijiang, et al.
Publicado: (2020) -
Graphical processing unit implementation of an integrated shape-based active contour: Application to digital pathology
por: Ali, Sahirzeeshan, et al.
Publicado: (2012) -
Distinguishing infective versus noninfective keratitis
por: Srinivasan, M, et al.
Publicado: (2008) -
Computer‐extracted features of nuclear morphology in hematoxylin and eosin images distinguish stage II and IV colon tumors
por: Kumar, Neeraj, et al.
Publicado: (2022)