Cargando…
Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
INTRODUCTION: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodolog...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678745/ https://www.ncbi.nlm.nih.gov/pubmed/23766941 http://dx.doi.org/10.4103/2153-3539.109831 |
_version_ | 1782272893970808832 |
---|---|
author | Held, Christian Nattkemper, Tim Palmisano, Ralf Wittenberg, Thomas |
author_facet | Held, Christian Nattkemper, Tim Palmisano, Ralf Wittenberg, Thomas |
author_sort | Held, Christian |
collection | PubMed |
description | INTRODUCTION: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. METHODS: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. RESULTS: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. CONCLUSION: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. |
format | Online Article Text |
id | pubmed-3678745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-36787452013-06-13 Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis Held, Christian Nattkemper, Tim Palmisano, Ralf Wittenberg, Thomas J Pathol Inform Symposium - Original Research INTRODUCTION: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. METHODS: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. RESULTS: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. CONCLUSION: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. Medknow Publications & Media Pvt Ltd 2013-03-30 /pmc/articles/PMC3678745/ /pubmed/23766941 http://dx.doi.org/10.4103/2153-3539.109831 Text en Copyright: © 2013 Held C. http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Symposium - Original Research Held, Christian Nattkemper, Tim Palmisano, Ralf Wittenberg, Thomas Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis |
title | Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis |
title_full | Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis |
title_fullStr | Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis |
title_full_unstemmed | Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis |
title_short | Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis |
title_sort | approaches to automatic parameter fitting in a microscopy image segmentation pipeline: an exploratory parameter space analysis |
topic | Symposium - Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678745/ https://www.ncbi.nlm.nih.gov/pubmed/23766941 http://dx.doi.org/10.4103/2153-3539.109831 |
work_keys_str_mv | AT heldchristian approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis AT nattkempertim approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis AT palmisanoralf approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis AT wittenbergthomas approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis |