Cargando…

Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

INTRODUCTION: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Held, Christian, Nattkemper, Tim, Palmisano, Ralf, Wittenberg, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678745/
https://www.ncbi.nlm.nih.gov/pubmed/23766941
http://dx.doi.org/10.4103/2153-3539.109831
_version_ 1782272893970808832
author Held, Christian
Nattkemper, Tim
Palmisano, Ralf
Wittenberg, Thomas
author_facet Held, Christian
Nattkemper, Tim
Palmisano, Ralf
Wittenberg, Thomas
author_sort Held, Christian
collection PubMed
description INTRODUCTION: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. METHODS: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. RESULTS: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. CONCLUSION: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.
format Online
Article
Text
id pubmed-3678745
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-36787452013-06-13 Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis Held, Christian Nattkemper, Tim Palmisano, Ralf Wittenberg, Thomas J Pathol Inform Symposium - Original Research INTRODUCTION: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. METHODS: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. RESULTS: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. CONCLUSION: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. Medknow Publications & Media Pvt Ltd 2013-03-30 /pmc/articles/PMC3678745/ /pubmed/23766941 http://dx.doi.org/10.4103/2153-3539.109831 Text en Copyright: © 2013 Held C. http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Symposium - Original Research
Held, Christian
Nattkemper, Tim
Palmisano, Ralf
Wittenberg, Thomas
Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
title Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
title_full Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
title_fullStr Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
title_full_unstemmed Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
title_short Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis
title_sort approaches to automatic parameter fitting in a microscopy image segmentation pipeline: an exploratory parameter space analysis
topic Symposium - Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678745/
https://www.ncbi.nlm.nih.gov/pubmed/23766941
http://dx.doi.org/10.4103/2153-3539.109831
work_keys_str_mv AT heldchristian approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis
AT nattkempertim approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis
AT palmisanoralf approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis
AT wittenbergthomas approachestoautomaticparameterfittinginamicroscopyimagesegmentationpipelineanexploratoryparameterspaceanalysis