Cargando…
Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach
CONTEXT: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. AIMS: The aim is to investigate t...
Autores principales: | Irshad, Humayun, Jalali, Sepehr, Roux, Ludovic, Racoceanu, Daniel, Hwee, Lim Joo, Naour, Gilles Le, Capron, Frédérique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678748/ https://www.ncbi.nlm.nih.gov/pubmed/23766934 http://dx.doi.org/10.4103/2153-3539.109870 |
Ejemplares similares
-
Mitosis detection in breast cancer histological images An ICPR 2012 contest
por: Roux, Ludovic, et al.
Publicado: (2013) -
Automated mitosis detection in histopathology using morphological and multi-channel statistics features
por: Irshad, Humayun
Publicado: (2013) -
Sparsity-Regularized HMAX for Visual Recognition
por: Hu, Xiaolin, et al.
Publicado: (2014) -
Enhanced HMAX model with feedforward feature learning for multiclass categorization
por: Li, Yinlin, et al.
Publicado: (2015) -
A hierarchical model of vision (HMAX) can also recognize speech
por: Roos, Matthew J, et al.
Publicado: (2014)