Cargando…
Histological stain evaluation for machine learning applications
AIMS: A methodology for quantitative comparison of histological stains based on their classification and clustering performance, which may facilitate the choice of histological stains for automatic pattern and image analysis. BACKGROUND: Machine learning and image analysis are becoming increasingly...
Autores principales: | Azar, Jimmy C., Busch, Christer, Carlbom, Ingrid B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678749/ https://www.ncbi.nlm.nih.gov/pubmed/23766933 http://dx.doi.org/10.4103/2153-3539.109869 |
Ejemplares similares
-
Microarray Core Detection by Geometric Restoration
por: Azar, Jimmy C., et al.
Publicado: (2013) -
Microarray Core Detection by Geometric Restoration
por: Azar, Jimmy C., et al.
Publicado: (2012) -
3D reconstruction of multiple stained histology images
por: Song, Yi, et al.
Publicado: (2013) -
Scalable system for classification of white blood cells from Leishman stained blood stain images
por: Mathur, Atin, et al.
Publicado: (2013) -
Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology
por: Avenel, Christophe, et al.
Publicado: (2019)