Cargando…
Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-ind...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679464/ https://www.ncbi.nlm.nih.gov/pubmed/23660976 http://dx.doi.org/10.1038/cdd.2013.42 |
_version_ | 1782272979887980544 |
---|---|
author | Sridevi, P Nhiayi, M K Wang, J Y J |
author_facet | Sridevi, P Nhiayi, M K Wang, J Y J |
author_sort | Sridevi, P |
collection | PubMed |
description | DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Abl(μ/μ) mice. When injected with cisplatin, we found similar levels of platinum in the Abl(+/+) and the Abl(μ/μ) kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Abl(μ/μ) kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl(+/+) but not in the Abl(μ/μ) kidneys. The residual apoptosis in the Abl(μ/μ) mice was not further reduced in the Abl(μ/μ); p53(−/−) double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl(+/+) and the Abl(μ/μ) kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis. |
format | Online Article Text |
id | pubmed-3679464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36794642013-07-01 Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity Sridevi, P Nhiayi, M K Wang, J Y J Cell Death Differ Original Paper DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Abl(μ/μ) mice. When injected with cisplatin, we found similar levels of platinum in the Abl(+/+) and the Abl(μ/μ) kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Abl(μ/μ) kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl(+/+) but not in the Abl(μ/μ) kidneys. The residual apoptosis in the Abl(μ/μ) mice was not further reduced in the Abl(μ/μ); p53(−/−) double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl(+/+) and the Abl(μ/μ) kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis. Nature Publishing Group 2013-07 2013-05-10 /pmc/articles/PMC3679464/ /pubmed/23660976 http://dx.doi.org/10.1038/cdd.2013.42 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Original Paper Sridevi, P Nhiayi, M K Wang, J Y J Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
title | Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
title_full | Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
title_fullStr | Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
title_full_unstemmed | Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
title_short | Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
title_sort | genetic disruption of abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679464/ https://www.ncbi.nlm.nih.gov/pubmed/23660976 http://dx.doi.org/10.1038/cdd.2013.42 |
work_keys_str_mv | AT sridevip geneticdisruptionofablnuclearimportreducesrenalapoptosisinamousemodelofcisplatininducednephrotoxicity AT nhiayimk geneticdisruptionofablnuclearimportreducesrenalapoptosisinamousemodelofcisplatininducednephrotoxicity AT wangjyj geneticdisruptionofablnuclearimportreducesrenalapoptosisinamousemodelofcisplatininducednephrotoxicity |