Cargando…
Sensing, assessing, and augmenting threat detection: behavioral, neuroimaging, and brain stimulation evidence for the critical role of attention
Rapidly identifying the potentially threatening movements of other people and objects—biological motion perception and action understanding—is critical to maintaining security in many civilian and military settings. A key approach to improving threat detection in these environments is to sense when...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679495/ https://www.ncbi.nlm.nih.gov/pubmed/23781194 http://dx.doi.org/10.3389/fnhum.2013.00273 |
Sumario: | Rapidly identifying the potentially threatening movements of other people and objects—biological motion perception and action understanding—is critical to maintaining security in many civilian and military settings. A key approach to improving threat detection in these environments is to sense when less than ideal conditions exist for the human observer, assess that condition relative to an expected standard, and if necessary use tools to augment human performance. Action perception is typically viewed as a relatively “primitive,” automatic function immune to top-down effects. However, recent research shows that attention is a top-down factor that has a critical influence on the identification of threat-related targets. In this paper we show that detection of motion-based threats is attention sensitive when surveillance images are obscured by other movements, when they are visually degraded, when other stimuli or tasks compete for attention, or when low-probability threats must be watched for over long periods of time—all features typical of operational security settings. Neuroimaging studies reveal that action understanding recruits a distributed network of brain regions, including the superior temporal cortex, intraparietal cortex, and inferior frontal cortex. Within this network, attention modulates activation of the superior temporal sulcus (STS) and middle temporal gyrus. The dorsal frontoparietal network may provide the source of attention-modulation signals to action representation areas. Stimulation of this attention network should therefore enhance threat detection. We show that transcranial Direct Current Stimulation (tDCS) at 2 mA accelerates perceptual learning of participants performing a challenging threat-detection task. Together, cognitive, neuroimaging, and brain stimulation studies provide converging evidence for the critical role of attention in the detection and understanding of threat-related intentional actions. |
---|