Cargando…

No evidence for the development of acute analgesic tolerance during and hyperalgesia after prolonged remifentanil administration in mice

BACKGROUND: Acute opioid tolerance (AOT) and opioid-induced hyperalgesia (OIH) are undesirable effects of opioids that have been reported in both animals and humans. However, the development of AOT and OIH in cases of potent, short-acting μ-opioid receptor agonist remifentanil administration remains...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishii, Hideaki, Petrenko, Andrey B, Kohno, Tatsuro, Baba, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679751/
https://www.ncbi.nlm.nih.gov/pubmed/23497285
http://dx.doi.org/10.1186/1744-8069-9-11
Descripción
Sumario:BACKGROUND: Acute opioid tolerance (AOT) and opioid-induced hyperalgesia (OIH) are undesirable effects of opioids that have been reported in both animals and humans. However, the development of AOT and OIH in cases of potent, short-acting μ-opioid receptor agonist remifentanil administration remains controversial. It has been suggested that the emergence of AOT and OIH by remifentanil could be dose and infusion duration dependent, i.e., low dose and short infusions may lead to negative results. In this study, we determined whether AOT and OIH could be elicited by prolonged, continuous administration of remifentanil at maximally tolerable doses in C57BL/6 mice. RESULTS: The analgesic effects of continuously administered remifentanil [by short (1 h) and prolonged (4 h) intraperitoneal infusions] were studied. These experiments involved repeated measurements of thermal thresholds during remifentanil administration. Therefore, particular attention was paid to prevent cumulative tissue injury, which could mimic pronociceptive effects of remifentanil. To exclude the possibility of pseudoAOT during infusion, we used brief cooling of all ipsilateral hindpaws that exhibited analgesic response. Thermal thresholds remained steadily elevated over a 1-h period during continuous administration at infusion rates of 120, 180, and 240 mg/kg/h, which indicated no AOT development. To exclude the possibility of pseudoOIH after infusion, intact contralateral hindpaws were used for all postinfusion threshold measurements. Thermal thresholds at each infusion rate returned to the baseline values within 15 min after the termination of the administration. They did not decrease below the baseline values during 1 h following infusion, which indicated no OIH development. Similar threshold dynamics were also observed for thermal and mechanical testing modalities in animals infused at 120 mg/kg/h for 4 h as well as in animals with rapidly attained and maintained maximum analgesia for 3 h. CONCLUSIONS: These results suggest that neither intra-infusion AOT nor postinfusion OIH develops in mice receiving continuous remifentanil when the possibility of cumulative tissue injury mimicking AOT or OIH is carefully avoided.