Cargando…

An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula

BACKGROUND: Legumes have the unique capacity to undergo two important root endosymbioses: the root nodule symbiosis and the arbuscular mycorrhizal symbiosis. Medicago truncatula is widely used to unravel the functions of genes during these root symbioses. Here we describe the development of an artif...

Descripción completa

Detalles Bibliográficos
Autores principales: Devers, Emanuel A, Teply, Julia, Reinert, Armin, Gaude, Nicole, Krajinski, Franziska
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679836/
https://www.ncbi.nlm.nih.gov/pubmed/23679580
http://dx.doi.org/10.1186/1471-2229-13-82
_version_ 1782273027371696128
author Devers, Emanuel A
Teply, Julia
Reinert, Armin
Gaude, Nicole
Krajinski, Franziska
author_facet Devers, Emanuel A
Teply, Julia
Reinert, Armin
Gaude, Nicole
Krajinski, Franziska
author_sort Devers, Emanuel A
collection PubMed
description BACKGROUND: Legumes have the unique capacity to undergo two important root endosymbioses: the root nodule symbiosis and the arbuscular mycorrhizal symbiosis. Medicago truncatula is widely used to unravel the functions of genes during these root symbioses. Here we describe the development of an artificial microRNA (amiR)-mediated gene silencing system for M. truncatula roots. RESULTS: The endogenous microRNA (miR) mtr-miR159b was selected as a backbone molecule for driving amiR expression. Heterologous expression of mtr-miR159b-amiR constructs in tobacco showed that the backbone is functional and mediates an efficient gene silencing. amiR-mediated silencing of a visible marker was also effective after root transformation of M. truncatula constitutively expressing the visible marker. Most importantly, we applied the novel amiR system to shed light on the function of a putative transcription factor, MtErf1, which was strongly induced in arbuscule-containing cells during mycorrhizal symbiosis. MtPt4 promoter driven amiR-silencing led to strongly decreased transcript levels and deformed, non-fully truncated arbuscules indicating that MtErf1 is required for arbuscule development. CONCLUSIONS: The endogenous amiR system demonstrated here presents a novel and highly efficient tool to unravel gene functions during root endosymbioses.
format Online
Article
Text
id pubmed-3679836
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36798362013-06-13 An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula Devers, Emanuel A Teply, Julia Reinert, Armin Gaude, Nicole Krajinski, Franziska BMC Plant Biol Methodology Article BACKGROUND: Legumes have the unique capacity to undergo two important root endosymbioses: the root nodule symbiosis and the arbuscular mycorrhizal symbiosis. Medicago truncatula is widely used to unravel the functions of genes during these root symbioses. Here we describe the development of an artificial microRNA (amiR)-mediated gene silencing system for M. truncatula roots. RESULTS: The endogenous microRNA (miR) mtr-miR159b was selected as a backbone molecule for driving amiR expression. Heterologous expression of mtr-miR159b-amiR constructs in tobacco showed that the backbone is functional and mediates an efficient gene silencing. amiR-mediated silencing of a visible marker was also effective after root transformation of M. truncatula constitutively expressing the visible marker. Most importantly, we applied the novel amiR system to shed light on the function of a putative transcription factor, MtErf1, which was strongly induced in arbuscule-containing cells during mycorrhizal symbiosis. MtPt4 promoter driven amiR-silencing led to strongly decreased transcript levels and deformed, non-fully truncated arbuscules indicating that MtErf1 is required for arbuscule development. CONCLUSIONS: The endogenous amiR system demonstrated here presents a novel and highly efficient tool to unravel gene functions during root endosymbioses. BioMed Central 2013-05-16 /pmc/articles/PMC3679836/ /pubmed/23679580 http://dx.doi.org/10.1186/1471-2229-13-82 Text en Copyright © 2013 Devers et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Devers, Emanuel A
Teply, Julia
Reinert, Armin
Gaude, Nicole
Krajinski, Franziska
An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
title An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
title_full An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
title_fullStr An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
title_full_unstemmed An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
title_short An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
title_sort endogenous artificial microrna system for unraveling the function of root endosymbioses related genes in medicago truncatula
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679836/
https://www.ncbi.nlm.nih.gov/pubmed/23679580
http://dx.doi.org/10.1186/1471-2229-13-82
work_keys_str_mv AT deversemanuela anendogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT teplyjulia anendogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT reinertarmin anendogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT gaudenicole anendogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT krajinskifranziska anendogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT deversemanuela endogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT teplyjulia endogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT reinertarmin endogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT gaudenicole endogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula
AT krajinskifranziska endogenousartificialmicrornasystemforunravelingthefunctionofrootendosymbiosesrelatedgenesinmedicagotruncatula