Cargando…

In vitro susceptibility to quinine and microsatellite variations of the Plasmodium falciparum Na(+)/H(+) exchanger transporter (Pfnhe-1) gene in 393 isolates from Dakar, Senegal

BACKGROUND: Although the World Health Organization recommends replacing quinine (QN) by artesunate due to its increased efficacy and the higher tolerance to the drug in both adults and children, QN remains a first-line treatment for severe malaria, especially in Africa. Investigations of microsatell...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascual, Aurélie, Fall, Bécaye, Wurtz, Nathalie, Fall, Mansour, Camara, Cheikhou, Nakoulima, Aminata, Baret, Eric, Diatta, Bakary, Fall, Khadidiatou Ba, Mbaye, Pape Saliou, Diémé, Yaya, Bercion, Raymond, Bogreau, Hervé, Briolant, Sébastien, Rogier, Christophe, Wade, Boubacar, Pradines, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679854/
https://www.ncbi.nlm.nih.gov/pubmed/23758769
http://dx.doi.org/10.1186/1475-2875-12-189
Descripción
Sumario:BACKGROUND: Although the World Health Organization recommends replacing quinine (QN) by artesunate due to its increased efficacy and the higher tolerance to the drug in both adults and children, QN remains a first-line treatment for severe malaria, especially in Africa. Investigations of microsatellite Pfnhe-1 ms4760 polymorphisms in culture-adapted isolates from around the world have revealed that an increase in the number of DNNND amino acid motifs was associated with decreased QN susceptibility, whereas an increase in the number of DDNHNDNHNND motifs was associated with increased QN susceptibility. METHODS: In this context, to further analyse associations between Pfnhe-1 ms4760 polymorphisms and QN susceptibility, 393 isolates freshly collected between October 2009 and January 2010 and July 2010 and February 2011, respectively, at the Hôpital Principal de Dakar, Senegal were assessed ex vivo for QN susceptibility, and their genes were amplified and sequenced. RESULTS: Of the 393 Plasmodium falciparum clinical isolates collected, 145 were successfully cultured. The 145 QN IC(50)s ranged from 2.1 to 1291 nM, and 17 isolates (11.7%) exceed the QN reduced susceptibility threshold of 611 nM. Among the 393 P. falciparum clinical isolates, 47 different alleles were observed. The three most prevalent profiles were ms4760-1 (no = 72; 18.3%), ms4760-3 (no = 65; 16.5%) and ms4760-7 (no = 40; 10.2%). There were no significant associations observed between QN IC(50) values and i) the number of repeats of DNNND in block II (p = 0.0955, Kruskal-Wallis test); ii) the number of repeats of DDNHNDNHNND in block V (p = 0.1455, Kruskal-Wallis test); or iii) ms4760 profiles (p = 0.1809, Kruskal-Wallis test). CONCLUSIONS: Pfnhe-1 ms4760 was highly diverse in parasite isolates from Dakar (47 different profiles). Three profiles (ms4760-1, ms4760-3 and ms4760-7) were predominant. The number of repeats for block II (DNNND) or block V (DDNHNDNHNND) was not significantly associated with QN susceptibility. New studies, and especially in vivo studies, are necessary to confirm the role of Pfnhe-1 ms4760 as a marker of QN resistance.