Cargando…
Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case
In this paper, we study a simple model of a purely excitatory neural network that, by construction, operates at a critical point. This model allows us to consider various markers of criticality and illustrate how they should perform in a finite-size system. By calculating the exact distribution of a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679959/ https://www.ncbi.nlm.nih.gov/pubmed/23618010 http://dx.doi.org/10.1186/2190-8567-3-5 |
_version_ | 1782273045487943680 |
---|---|
author | Taylor, Timothy J Hartley, Caroline Simon, Péter L Kiss, Istvan Z Berthouze, Luc |
author_facet | Taylor, Timothy J Hartley, Caroline Simon, Péter L Kiss, Istvan Z Berthouze, Luc |
author_sort | Taylor, Timothy J |
collection | PubMed |
description | In this paper, we study a simple model of a purely excitatory neural network that, by construction, operates at a critical point. This model allows us to consider various markers of criticality and illustrate how they should perform in a finite-size system. By calculating the exact distribution of avalanche sizes, we are able to show that, over a limited range of avalanche sizes which we precisely identify, the distribution has scale free properties but is not a power law. This suggests that it would be inappropriate to dismiss a system as not being critical purely based on an inability to rigorously fit a power law distribution as has been recently advocated. In assessing whether a system, especially a finite-size one, is critical it is thus important to consider other possible markers. We illustrate one of these by showing the divergence of susceptibility as the critical point of the system is approached. Finally, we provide evidence that power laws may underlie other observables of the system that may be more amenable to robust experimental assessment. |
format | Online Article Text |
id | pubmed-3679959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-36799592013-06-14 Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case Taylor, Timothy J Hartley, Caroline Simon, Péter L Kiss, Istvan Z Berthouze, Luc J Math Neurosci Research In this paper, we study a simple model of a purely excitatory neural network that, by construction, operates at a critical point. This model allows us to consider various markers of criticality and illustrate how they should perform in a finite-size system. By calculating the exact distribution of avalanche sizes, we are able to show that, over a limited range of avalanche sizes which we precisely identify, the distribution has scale free properties but is not a power law. This suggests that it would be inappropriate to dismiss a system as not being critical purely based on an inability to rigorously fit a power law distribution as has been recently advocated. In assessing whether a system, especially a finite-size one, is critical it is thus important to consider other possible markers. We illustrate one of these by showing the divergence of susceptibility as the critical point of the system is approached. Finally, we provide evidence that power laws may underlie other observables of the system that may be more amenable to robust experimental assessment. Springer 2013-04-23 /pmc/articles/PMC3679959/ /pubmed/23618010 http://dx.doi.org/10.1186/2190-8567-3-5 Text en Copyright ©2013 T.J. Taylor et al.; licensee Springer http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Taylor, Timothy J Hartley, Caroline Simon, Péter L Kiss, Istvan Z Berthouze, Luc Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case |
title | Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case |
title_full | Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case |
title_fullStr | Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case |
title_full_unstemmed | Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case |
title_short | Identification of Criticality in Neuronal Avalanches: I. A Theoretical Investigation of the Non-driven Case |
title_sort | identification of criticality in neuronal avalanches: i. a theoretical investigation of the non-driven case |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679959/ https://www.ncbi.nlm.nih.gov/pubmed/23618010 http://dx.doi.org/10.1186/2190-8567-3-5 |
work_keys_str_mv | AT taylortimothyj identificationofcriticalityinneuronalavalanchesiatheoreticalinvestigationofthenondrivencase AT hartleycaroline identificationofcriticalityinneuronalavalanchesiatheoreticalinvestigationofthenondrivencase AT simonpeterl identificationofcriticalityinneuronalavalanchesiatheoreticalinvestigationofthenondrivencase AT kissistvanz identificationofcriticalityinneuronalavalanchesiatheoreticalinvestigationofthenondrivencase AT berthouzeluc identificationofcriticalityinneuronalavalanchesiatheoreticalinvestigationofthenondrivencase |