Cargando…
Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst
BACKGROUND: Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the u...
Autores principales: | Selvaraj, Jerritta, Murugappan, Murugappan, Wan, Khairunizam, Yaacob, Sazali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680185/ https://www.ncbi.nlm.nih.gov/pubmed/23680041 http://dx.doi.org/10.1186/1475-925X-12-44 |
Ejemplares similares
-
Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human
Emotional State Classification Using Discrete Wavelet Transform (DWT)
por: Murugappan, Murugappan, et al.
Publicado: (2013) -
An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals
por: Wen Yean, Choong, et al.
Publicado: (2020) -
Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography
por: Murugappan, Murugappan, et al.
Publicado: (2020) -
Facial geometric feature extraction based emotional expression classification using machine learning algorithms
por: M., Murugappan, et al.
Publicado: (2021) -
Utilizing variable auto encoder-based TDO optimization algorithm for predicting loneliness from electrocardiogram signals
por: Bharathi Vidhya, R., et al.
Publicado: (2023)