Cargando…
Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744
BACKGROUND: Eukaryotic translation elongation factor 1A2 (eEF1A2) is a known proto-oncogene. We proposed that stimulation of the eEF1A2 expression in cancer tissues is caused by the loss of miRNA-mediated control. METHODS: Impact of miRNAs on eEF1A2 at the mRNA and protein levels was examined by qPC...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681015/ https://www.ncbi.nlm.nih.gov/pubmed/23695020 http://dx.doi.org/10.1038/bjc.2013.243 |
Sumario: | BACKGROUND: Eukaryotic translation elongation factor 1A2 (eEF1A2) is a known proto-oncogene. We proposed that stimulation of the eEF1A2 expression in cancer tissues is caused by the loss of miRNA-mediated control. METHODS: Impact of miRNAs on eEF1A2 at the mRNA and protein levels was examined by qPCR and western blot, respectively. Dual-luciferase assay was applied to examine the influence of miRNAs on 3′-UTR of EEF1A2. To detect miRNA-binding sites, mutations into the 3′-UTR of EEF1A2 mRNA were introduced by the overlap extension PCR. RESULTS: miR-663 and miR-744 inhibited the expression of luciferase gene attached to the 3′-UTR of EEF1A2 up to 20% and 50%, respectively. In MCF7 cells, overexpression of miR-663 and miR-744 reduced the EEF1A2 mRNA level by 30% and 50%. Analogous effects were also observed at the eEF1A2 protein level. In resveratrol-treated MCF7 cells the upregulation of mir-663 and mir-744 was accompanied by downregulation of EEF1A2 mRNA. Both miRNAs were able to inhibit the proliferation of MCF7 cells. CONCLUSION: miR-663 and miR-744 mediate inhibition of the proto-oncogene eEF1A2 expression that results in retardation of the MCF7 cancer cells proliferation. Antitumour effect of resveratrol may include stimulation of the miR-663 and miR-744 expression. |
---|