Cargando…
Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals
As urbanization progresses worldwide, earthquakes pose serious threat to lives and properties for urban areas near major active faults on land or subduction zones offshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquake hazards, if the spatial relation between cities and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681156/ https://www.ncbi.nlm.nih.gov/pubmed/27879692 |
Sumario: | As urbanization progresses worldwide, earthquakes pose serious threat to lives and properties for urban areas near major active faults on land or subduction zones offshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquake hazards, if the spatial relation between cities and earthquake sources is favorable for such warning and their citizens are properly trained to respond to earthquake warning messages. An EEW system forewarns an urban area of forthcoming strong shaking, normally with a few sec to a few tens of sec of warning time, i.e., before the arrival of the destructive S-wave part of the strong ground motion. Even a few second of advanced warning time will be useful for pre-programmed emergency measures for various critical facilities, such as rapid-transit vehicles and high-speed trains to avoid potential derailment; it will be also useful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown of high-technological manufacturing operations to reduce potential losses, and safe-guarding of computer facilities to avoid loss of vital databases. We explored a practical approach to EEW with the use of a ground-motion period parameter τ(c) and a high-pass filtered vertical displacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a given site, an earthquake magnitude could be determined from τ(c) and the peak ground-motion velocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A P-wave trigger is constantly monitored. When a trigger occurs, τ(c) and Pd are computed. The earthquake magnitude and the on-site ground-motion intensity could be estimated and the warning could be issued. In an ideal situation, such warnings would be available within 10 sec of the origin time of a large earthquake whose subsequent ground motion may last for tens of seconds. |
---|