Cargando…
A Hamster-Derived West Nile Virus Isolate Induces Persistent Renal Infection in Mice
BACKGROUND: West Nile virus (WNV) can persist long term in the brain and kidney tissues of humans, non-human primates, and hamsters. In this study, mice were infected with WNV strain H8912, previously cultured from the urine of a persistently infected hamster, to determine its pathogenesis in a muri...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681636/ https://www.ncbi.nlm.nih.gov/pubmed/23785537 http://dx.doi.org/10.1371/journal.pntd.0002275 |
Sumario: | BACKGROUND: West Nile virus (WNV) can persist long term in the brain and kidney tissues of humans, non-human primates, and hamsters. In this study, mice were infected with WNV strain H8912, previously cultured from the urine of a persistently infected hamster, to determine its pathogenesis in a murine host. METHODOLOGY/PRINCIPAL FINDINGS: We found that WNV H8912 was highly attenuated for neuroinvasiveness in mice. Following a systemic infection, viral RNA could be detected quickly in blood and spleen and much later in kidneys. WNV H8912 induced constitutive IL-10 production, upregulation of IFN-β and IL-1β expression, and a specific IgM response on day 10 post-infection. WNV H8912 persisted preferentially in kidneys with mild renal inflammation, and less frequently in spleen for up to 2.5 months post infection. This was concurrent with detectable serum WNV-specific IgM and IgG production. There were also significantly fewer WNV- specific T cells and lower inflammatory responses in kidneys than in spleen. Previous studies have shown that systemic wild-type WNV NY99 infection induced virus persistence preferentially in spleen than in mouse kidneys. Here, we noted that splenocytes of WNV H8912-infected mice produced significantly less IL-10 than those of WNV NY99-infected mice. Finally, WNV H8912 was also attenuated in neurovirulence. Following intracranial inoculation, WNV persisted in the brain at a low frequency, concurrent with neither inflammatory responses nor neuronal damage in the brain. CONCLUSIONS: WNV H8912 is highly attenuated in both neuroinvasiveness and neurovirulence in mice. It induces a low and delayed anti-viral response in mice and preferentially persists in the kidneys. |
---|