Cargando…

Superiority and clinical significance of Lunx mRNA in the diagnosis of malignant pleural effusion caused by pulmonary carcinoma

BACKGROUND: Pulmonary carcinoma is the main cause of malignant pleural effusions (MPEs). However, there is no satisfactory marker for diagnosing MPEs caused by pulmonary carcinoma. The purpose of this study is to assess the clinical significance of Lunx mRNA detection in diagnosing MPEs caused by pu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Ying, Xu, Lijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681715/
https://www.ncbi.nlm.nih.gov/pubmed/23759037
http://dx.doi.org/10.1186/1756-9966-32-37
Descripción
Sumario:BACKGROUND: Pulmonary carcinoma is the main cause of malignant pleural effusions (MPEs). However, there is no satisfactory marker for diagnosing MPEs caused by pulmonary carcinoma. The purpose of this study is to assess the clinical significance of Lunx mRNA detection in diagnosing MPEs caused by pulmonary carcinoma. METHODS: A total of 209 patients with pleural effusions were recruited. The patients were diagnosed by cast-off cells, bronchoscopy, and pleural biopsy. The levels of Lunx mRNA in the pleural effusions were determined by real-time PCR. The levels of PH, LDH, glucose, albumin, and CEA were also determined. Patients who accepted chemotherapy underwent Lunx mRNA detection before and after the first chemotherapy session. The patients were divided into four groups according the effect of chemotherapy: complete remission (CR), partial remission (PR), no change (NC), and progressive disease (PD). The patients were also divided into two groups according the change in direction of Lunx mRNA expression after chemotherapy: increased group and decreased group. The patients were followed up to determine survival. RESULTS: Lunx mRNA was positive in 89 of 106 patients with pleural effusions caused by pulmonary carcinoma. The specificity and sensitivity were 95.9% and 84.9%. The area under the ROC curve was 0.922. Lunx mRNA detection was better than detection using cast-off cells and CEA. All of the Lunx-positive patients with MPEs were diagnosed with pulmonary carcinoma, and all extrapulmonary carcinoma patients were Lunx-negative. The positive predictive value of Lunx mRNA for the source of tumor cells was 100%. Lunx mRNA expression decreased after the first session of chemotherapy in the CR and PR groups, increased in the PD group, there was no change in the NC group. Further analysis indicated the change in direction of Lunx mRNA expression was associated with the overall survival of patients. The patients in the increased group had longer overall survival times than those in the decreased group. CONCLUSION: Lunx mRNA is a specific tumor gene that is highly expressed in MPEs caused by pulmonary carcinoma. The changes in Lunx mRNA levels after chemotherapy can predict the prognosis of patients with MPEs caused by pulmonary carcinoma.