Cargando…
Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers
INTRODUCTION: With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inacc...
Autores principales: | Briët, Olivier J. T., Amerasinghe, Priyanie H., Vounatsou, Penelope |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681978/ https://www.ncbi.nlm.nih.gov/pubmed/23785448 http://dx.doi.org/10.1371/journal.pone.0065761 |
Ejemplares similares
-
Models for short term malaria prediction in Sri Lanka
por: Briët, Olivier JT, et al.
Publicado: (2008) -
Temporal correlation between malaria and rainfall in Sri Lanka
por: Briët, Olivier JT, et al.
Publicado: (2008) -
Malaria in Sri Lanka: one year post-tsunami
por: Briët, Olivier JT, et al.
Publicado: (2006) -
Maps of the Sri Lanka malaria situation preceding the tsunami and key aspects to be considered in the emergency phase and beyond
por: Briët, Olivier JT, et al.
Publicado: (2005) -
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021)