Cargando…
Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway
BACKGROUND: The extracellular matrix plays a critical role in insuring tissue integrity and water homeostasis. However, breakdown products of the extracellular matrix have emerged as endogenous danger signals, designed to rapidly activate the immune system against a potential pathogen breach. Type I...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682892/ https://www.ncbi.nlm.nih.gov/pubmed/23721397 http://dx.doi.org/10.1186/1476-9255-10-23 |
_version_ | 1782273418105716736 |
---|---|
author | Black, Katharine E Collins, Samuel L Hagan, Robert S Hamblin, Mark J Chan-Li, Yee Hallowell, Robert W Powell, Jonathan D Horton, Maureen R |
author_facet | Black, Katharine E Collins, Samuel L Hagan, Robert S Hamblin, Mark J Chan-Li, Yee Hallowell, Robert W Powell, Jonathan D Horton, Maureen R |
author_sort | Black, Katharine E |
collection | PubMed |
description | BACKGROUND: The extracellular matrix plays a critical role in insuring tissue integrity and water homeostasis. However, breakdown products of the extracellular matrix have emerged as endogenous danger signals, designed to rapidly activate the immune system against a potential pathogen breach. Type I interferons play a critical role in the immune response against viral infections. In the lungs, hylauronan (HA) exists as a high molecular weight, biologically inert extracellular matrix component that is critical for maintaining lung function. When lung tissue is injured, HA is broken down into lower molecular weight fragments that alert the immune system to the breach in tissue integrity by activating innate immune responses. HA fragments are known to induce inflammatory gene expression via TLR-MyD88-dependent pathways. METHODS: Primary peritoneal macrophages from C57BL/6 wild type, TLR4 null, TLR3 null, MyD88 null, and TRIF null mice as well as alveolar and peritoneal macrophage cell lines were stimulated with HA fragments and cytokine production was assessed by rt-PCR and ELISA. Western blot analysis for IRF3 was preformed on cell lysates from macrophages stimulate with HA fragments RESULTS: We demonstrate for the first time that IFNβ is induced in murine macrophages by HA fragments. We also show that HA fragments induce IFNβ using a novel pathway independent of MyD88 but dependent on TLR4 via TRIF and IRF-3. CONCLUSIONS: Overall our findings reveal a novel signaling pathway by which hyaluronan can modulate inflammation and demonstrate the ability of hyaluronan fragments to induce the expression of type I interferons in response to tissue injury even in the absence of viral infection. This is independent of the pathway of the TLR2-MyD88 used by these matrix fragments to induce inflammatory chemokines. Thus, LMW HA may be modifying the inflammatory milieu simultaneously via several pathways. |
format | Online Article Text |
id | pubmed-3682892 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36828922013-06-15 Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway Black, Katharine E Collins, Samuel L Hagan, Robert S Hamblin, Mark J Chan-Li, Yee Hallowell, Robert W Powell, Jonathan D Horton, Maureen R J Inflamm (Lond) Research BACKGROUND: The extracellular matrix plays a critical role in insuring tissue integrity and water homeostasis. However, breakdown products of the extracellular matrix have emerged as endogenous danger signals, designed to rapidly activate the immune system against a potential pathogen breach. Type I interferons play a critical role in the immune response against viral infections. In the lungs, hylauronan (HA) exists as a high molecular weight, biologically inert extracellular matrix component that is critical for maintaining lung function. When lung tissue is injured, HA is broken down into lower molecular weight fragments that alert the immune system to the breach in tissue integrity by activating innate immune responses. HA fragments are known to induce inflammatory gene expression via TLR-MyD88-dependent pathways. METHODS: Primary peritoneal macrophages from C57BL/6 wild type, TLR4 null, TLR3 null, MyD88 null, and TRIF null mice as well as alveolar and peritoneal macrophage cell lines were stimulated with HA fragments and cytokine production was assessed by rt-PCR and ELISA. Western blot analysis for IRF3 was preformed on cell lysates from macrophages stimulate with HA fragments RESULTS: We demonstrate for the first time that IFNβ is induced in murine macrophages by HA fragments. We also show that HA fragments induce IFNβ using a novel pathway independent of MyD88 but dependent on TLR4 via TRIF and IRF-3. CONCLUSIONS: Overall our findings reveal a novel signaling pathway by which hyaluronan can modulate inflammation and demonstrate the ability of hyaluronan fragments to induce the expression of type I interferons in response to tissue injury even in the absence of viral infection. This is independent of the pathway of the TLR2-MyD88 used by these matrix fragments to induce inflammatory chemokines. Thus, LMW HA may be modifying the inflammatory milieu simultaneously via several pathways. BioMed Central 2013-05-30 /pmc/articles/PMC3682892/ /pubmed/23721397 http://dx.doi.org/10.1186/1476-9255-10-23 Text en Copyright © 2013 Black et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Black, Katharine E Collins, Samuel L Hagan, Robert S Hamblin, Mark J Chan-Li, Yee Hallowell, Robert W Powell, Jonathan D Horton, Maureen R Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway |
title | Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway |
title_full | Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway |
title_fullStr | Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway |
title_full_unstemmed | Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway |
title_short | Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway |
title_sort | hyaluronan fragments induce ifnβ via a novel tlr4-trif-tbk1-irf3-dependent pathway |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682892/ https://www.ncbi.nlm.nih.gov/pubmed/23721397 http://dx.doi.org/10.1186/1476-9255-10-23 |
work_keys_str_mv | AT blackkatharinee hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT collinssamuell hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT haganroberts hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT hamblinmarkj hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT chanliyee hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT hallowellrobertw hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT powelljonathand hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway AT hortonmaureenr hyaluronanfragmentsinduceifnbviaanoveltlr4triftbk1irf3dependentpathway |