Cargando…

A Physiology-Based Seizure Detection System for Multichannel EEG

BACKGROUND: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Chia-Ping, Liu, Shih-Ting, Zhou, Wei-Zhi, Lin, Feng-Seng, Lam, Andy Yan-Yu, Sung, Hsiao-Ya, Chen, Wei, Lin, Jeng-Wei, Chiu, Ming-Jang, Pan, Ming-Kai, Kao, Jui-Hung, Wu, Jin-Ming, Lai, Feipei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683026/
https://www.ncbi.nlm.nih.gov/pubmed/23799053
http://dx.doi.org/10.1371/journal.pone.0065862
_version_ 1782273445421121536
author Shen, Chia-Ping
Liu, Shih-Ting
Zhou, Wei-Zhi
Lin, Feng-Seng
Lam, Andy Yan-Yu
Sung, Hsiao-Ya
Chen, Wei
Lin, Jeng-Wei
Chiu, Ming-Jang
Pan, Ming-Kai
Kao, Jui-Hung
Wu, Jin-Ming
Lai, Feipei
author_facet Shen, Chia-Ping
Liu, Shih-Ting
Zhou, Wei-Zhi
Lin, Feng-Seng
Lam, Andy Yan-Yu
Sung, Hsiao-Ya
Chen, Wei
Lin, Jeng-Wei
Chiu, Ming-Jang
Pan, Ming-Kai
Kao, Jui-Hung
Wu, Jin-Ming
Lai, Feipei
author_sort Shen, Chia-Ping
collection PubMed
description BACKGROUND: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable. METHODOLOGY: This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching. PRINCIPAL FINDINGS: We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection. CONCLUSION: We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system.
format Online
Article
Text
id pubmed-3683026
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36830262013-06-24 A Physiology-Based Seizure Detection System for Multichannel EEG Shen, Chia-Ping Liu, Shih-Ting Zhou, Wei-Zhi Lin, Feng-Seng Lam, Andy Yan-Yu Sung, Hsiao-Ya Chen, Wei Lin, Jeng-Wei Chiu, Ming-Jang Pan, Ming-Kai Kao, Jui-Hung Wu, Jin-Ming Lai, Feipei PLoS One Research Article BACKGROUND: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable. METHODOLOGY: This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching. PRINCIPAL FINDINGS: We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection. CONCLUSION: We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system. Public Library of Science 2013-06-14 /pmc/articles/PMC3683026/ /pubmed/23799053 http://dx.doi.org/10.1371/journal.pone.0065862 Text en © 2013 Shen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Shen, Chia-Ping
Liu, Shih-Ting
Zhou, Wei-Zhi
Lin, Feng-Seng
Lam, Andy Yan-Yu
Sung, Hsiao-Ya
Chen, Wei
Lin, Jeng-Wei
Chiu, Ming-Jang
Pan, Ming-Kai
Kao, Jui-Hung
Wu, Jin-Ming
Lai, Feipei
A Physiology-Based Seizure Detection System for Multichannel EEG
title A Physiology-Based Seizure Detection System for Multichannel EEG
title_full A Physiology-Based Seizure Detection System for Multichannel EEG
title_fullStr A Physiology-Based Seizure Detection System for Multichannel EEG
title_full_unstemmed A Physiology-Based Seizure Detection System for Multichannel EEG
title_short A Physiology-Based Seizure Detection System for Multichannel EEG
title_sort physiology-based seizure detection system for multichannel eeg
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683026/
https://www.ncbi.nlm.nih.gov/pubmed/23799053
http://dx.doi.org/10.1371/journal.pone.0065862
work_keys_str_mv AT shenchiaping aphysiologybasedseizuredetectionsystemformultichanneleeg
AT liushihting aphysiologybasedseizuredetectionsystemformultichanneleeg
AT zhouweizhi aphysiologybasedseizuredetectionsystemformultichanneleeg
AT linfengseng aphysiologybasedseizuredetectionsystemformultichanneleeg
AT lamandyyanyu aphysiologybasedseizuredetectionsystemformultichanneleeg
AT sunghsiaoya aphysiologybasedseizuredetectionsystemformultichanneleeg
AT chenwei aphysiologybasedseizuredetectionsystemformultichanneleeg
AT linjengwei aphysiologybasedseizuredetectionsystemformultichanneleeg
AT chiumingjang aphysiologybasedseizuredetectionsystemformultichanneleeg
AT panmingkai aphysiologybasedseizuredetectionsystemformultichanneleeg
AT kaojuihung aphysiologybasedseizuredetectionsystemformultichanneleeg
AT wujinming aphysiologybasedseizuredetectionsystemformultichanneleeg
AT laifeipei aphysiologybasedseizuredetectionsystemformultichanneleeg
AT shenchiaping physiologybasedseizuredetectionsystemformultichanneleeg
AT liushihting physiologybasedseizuredetectionsystemformultichanneleeg
AT zhouweizhi physiologybasedseizuredetectionsystemformultichanneleeg
AT linfengseng physiologybasedseizuredetectionsystemformultichanneleeg
AT lamandyyanyu physiologybasedseizuredetectionsystemformultichanneleeg
AT sunghsiaoya physiologybasedseizuredetectionsystemformultichanneleeg
AT chenwei physiologybasedseizuredetectionsystemformultichanneleeg
AT linjengwei physiologybasedseizuredetectionsystemformultichanneleeg
AT chiumingjang physiologybasedseizuredetectionsystemformultichanneleeg
AT panmingkai physiologybasedseizuredetectionsystemformultichanneleeg
AT kaojuihung physiologybasedseizuredetectionsystemformultichanneleeg
AT wujinming physiologybasedseizuredetectionsystemformultichanneleeg
AT laifeipei physiologybasedseizuredetectionsystemformultichanneleeg