Cargando…
A Physiology-Based Seizure Detection System for Multichannel EEG
BACKGROUND: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683026/ https://www.ncbi.nlm.nih.gov/pubmed/23799053 http://dx.doi.org/10.1371/journal.pone.0065862 |
_version_ | 1782273445421121536 |
---|---|
author | Shen, Chia-Ping Liu, Shih-Ting Zhou, Wei-Zhi Lin, Feng-Seng Lam, Andy Yan-Yu Sung, Hsiao-Ya Chen, Wei Lin, Jeng-Wei Chiu, Ming-Jang Pan, Ming-Kai Kao, Jui-Hung Wu, Jin-Ming Lai, Feipei |
author_facet | Shen, Chia-Ping Liu, Shih-Ting Zhou, Wei-Zhi Lin, Feng-Seng Lam, Andy Yan-Yu Sung, Hsiao-Ya Chen, Wei Lin, Jeng-Wei Chiu, Ming-Jang Pan, Ming-Kai Kao, Jui-Hung Wu, Jin-Ming Lai, Feipei |
author_sort | Shen, Chia-Ping |
collection | PubMed |
description | BACKGROUND: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable. METHODOLOGY: This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching. PRINCIPAL FINDINGS: We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection. CONCLUSION: We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system. |
format | Online Article Text |
id | pubmed-3683026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36830262013-06-24 A Physiology-Based Seizure Detection System for Multichannel EEG Shen, Chia-Ping Liu, Shih-Ting Zhou, Wei-Zhi Lin, Feng-Seng Lam, Andy Yan-Yu Sung, Hsiao-Ya Chen, Wei Lin, Jeng-Wei Chiu, Ming-Jang Pan, Ming-Kai Kao, Jui-Hung Wu, Jin-Ming Lai, Feipei PLoS One Research Article BACKGROUND: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable. METHODOLOGY: This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching. PRINCIPAL FINDINGS: We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection. CONCLUSION: We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system. Public Library of Science 2013-06-14 /pmc/articles/PMC3683026/ /pubmed/23799053 http://dx.doi.org/10.1371/journal.pone.0065862 Text en © 2013 Shen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shen, Chia-Ping Liu, Shih-Ting Zhou, Wei-Zhi Lin, Feng-Seng Lam, Andy Yan-Yu Sung, Hsiao-Ya Chen, Wei Lin, Jeng-Wei Chiu, Ming-Jang Pan, Ming-Kai Kao, Jui-Hung Wu, Jin-Ming Lai, Feipei A Physiology-Based Seizure Detection System for Multichannel EEG |
title | A Physiology-Based Seizure Detection System for Multichannel EEG |
title_full | A Physiology-Based Seizure Detection System for Multichannel EEG |
title_fullStr | A Physiology-Based Seizure Detection System for Multichannel EEG |
title_full_unstemmed | A Physiology-Based Seizure Detection System for Multichannel EEG |
title_short | A Physiology-Based Seizure Detection System for Multichannel EEG |
title_sort | physiology-based seizure detection system for multichannel eeg |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683026/ https://www.ncbi.nlm.nih.gov/pubmed/23799053 http://dx.doi.org/10.1371/journal.pone.0065862 |
work_keys_str_mv | AT shenchiaping aphysiologybasedseizuredetectionsystemformultichanneleeg AT liushihting aphysiologybasedseizuredetectionsystemformultichanneleeg AT zhouweizhi aphysiologybasedseizuredetectionsystemformultichanneleeg AT linfengseng aphysiologybasedseizuredetectionsystemformultichanneleeg AT lamandyyanyu aphysiologybasedseizuredetectionsystemformultichanneleeg AT sunghsiaoya aphysiologybasedseizuredetectionsystemformultichanneleeg AT chenwei aphysiologybasedseizuredetectionsystemformultichanneleeg AT linjengwei aphysiologybasedseizuredetectionsystemformultichanneleeg AT chiumingjang aphysiologybasedseizuredetectionsystemformultichanneleeg AT panmingkai aphysiologybasedseizuredetectionsystemformultichanneleeg AT kaojuihung aphysiologybasedseizuredetectionsystemformultichanneleeg AT wujinming aphysiologybasedseizuredetectionsystemformultichanneleeg AT laifeipei aphysiologybasedseizuredetectionsystemformultichanneleeg AT shenchiaping physiologybasedseizuredetectionsystemformultichanneleeg AT liushihting physiologybasedseizuredetectionsystemformultichanneleeg AT zhouweizhi physiologybasedseizuredetectionsystemformultichanneleeg AT linfengseng physiologybasedseizuredetectionsystemformultichanneleeg AT lamandyyanyu physiologybasedseizuredetectionsystemformultichanneleeg AT sunghsiaoya physiologybasedseizuredetectionsystemformultichanneleeg AT chenwei physiologybasedseizuredetectionsystemformultichanneleeg AT linjengwei physiologybasedseizuredetectionsystemformultichanneleeg AT chiumingjang physiologybasedseizuredetectionsystemformultichanneleeg AT panmingkai physiologybasedseizuredetectionsystemformultichanneleeg AT kaojuihung physiologybasedseizuredetectionsystemformultichanneleeg AT wujinming physiologybasedseizuredetectionsystemformultichanneleeg AT laifeipei physiologybasedseizuredetectionsystemformultichanneleeg |