Cargando…
Effects of Forward Model Errors on EEG Source Localization
Subject-specific four-layer boundary element method (BEM) electrical forward head models for four participants, generated from magnetic resonance (MR) head images using NFT (www.sccn.ucsd.edu/wiki/NFT), were used to simulate electroencephalographic (EEG) scalp potentials at 256 recorded electrode po...
Autores principales: | Akalin Acar, Zeynep, Makeig, Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683142/ https://www.ncbi.nlm.nih.gov/pubmed/23355112 http://dx.doi.org/10.1007/s10548-012-0274-6 |
Ejemplares similares
-
Ear-EEG Forward Models: Improved Head-Models for Ear-EEG
por: Kappel, Simon L., et al.
Publicado: (2019) -
EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing
por: Delorme, Arnaud, et al.
Publicado: (2011) -
Independent EEG Sources Are Dipolar
por: Delorme, Arnaud, et al.
Publicado: (2012) -
The Sensitivity of Ear-EEG: Evaluating the Source-Sensor Relationship Using Forward Modeling
por: Meiser, Arnd, et al.
Publicado: (2020) -
EEG Source Imaging Indices of Cognitive Control Show Associations with Dopamine System Genes
por: McLoughlin, G., et al.
Publicado: (2017)