Cargando…
Helical ambivalency induced by point mutations
BACKGROUND: Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683331/ https://www.ncbi.nlm.nih.gov/pubmed/23675772 http://dx.doi.org/10.1186/1472-6807-13-9 |
Sumario: | BACKGROUND: Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known. RESULTS: Sequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible. CONCLUSIONS: All types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design de novo proteins via point mutations. |
---|