Cargando…

Expression of VDAC Regulated by Extracts of Limonium sinense Ktze root Against CCl(4)-induced Liver Damage

The expression of mitochondrial voltage-dependent anion channels (VDAC) may underlie the protective effects of Limonium sinense (Girard) Ktze root extracts (LSE) against carbon tetrachloride-induced liver damage. Pretreatment of mice with 100 mg/kg, 200 mg/kg or 400 mg/kg LSE significantly blocked t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Xinhui, Gao, Jing, Chen, Jin, Xu, Lizhi, Tang, Yahong, Dou, Huan, Yu, Wen, Zhao, Xiaoning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685235/
Descripción
Sumario:The expression of mitochondrial voltage-dependent anion channels (VDAC) may underlie the protective effects of Limonium sinense (Girard) Ktze root extracts (LSE) against carbon tetrachloride-induced liver damage. Pretreatment of mice with 100 mg/kg, 200 mg/kg or 400 mg/kg LSE significantly blocked the carbon tetrachloride-induced increase in both serum aspartate aminotransferase (sAST) and serum alanine aminotransferase (sALT) levels. Ultrastructural observations by electron microscope confirmed hepatoprotection, showing decreased nuclear condensation, ameliorated mitochondrial fragmentation of the cristae and less lipid deposition. Pretreatment with LSE prevented the decrease of the disruption of mitochondrial membrane potential (15.3%) observed in the liver of the carbon tetrachloride-insulted mice, further demonstrating the mitochondrial protection. In addition, LSE treatment (100-400 mg/kg) significantly increased both transcription and translation of VDAC. The above data suggests that LSE mitigates the damage to liver mitochondria induced by carbon tetrachloride, possibly through regulation of mitochondrial VDAC, one of the most important proteins in the mitochondrial outer membrane.