Cargando…
Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method
The radical-scavenging activity of estrogens (estrone, 2-hydroxyestradiol), estrogen-like compounds (diethylstilbestrol, DES; bisphenol A, BPA) and the monophenolic compound 2,6-di-t-butyl-4-methoxyphenol (BMP) was investigated using the method of measuring the induction period for polymerization of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685384/ |
_version_ | 1782273687280418816 |
---|---|
author | Kadoma, Yoshinori Fujisawa, Seiichiro |
author_facet | Kadoma, Yoshinori Fujisawa, Seiichiro |
author_sort | Kadoma, Yoshinori |
collection | PubMed |
description | The radical-scavenging activity of estrogens (estrone, 2-hydroxyestradiol), estrogen-like compounds (diethylstilbestrol, DES; bisphenol A, BPA) and the monophenolic compound 2,6-di-t-butyl-4-methoxyphenol (BMP) was investigated using the method of measuring the induction period for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2′-azobisisobutyronitrile (AIBN) and benzoyl peroxide (BPO) at 70°C using differential scanning calorimetry (DSC). The stoichiometric factor (n, number of free radicals trapped by one mole of antioxidant moiety) for the AIBN system declined in the order BMP (2.0), 2-hydroxyestradiol (2.0)> DES (1.3) > BPA (1.2) > estrone (0.9), whereas that for the BPO system declined in the order BMP (2.0) >DES (1.9), BPA (1.9) > estrone (1.3) > 2-hydroxyestradiol (0.7). The inhibition rate constant (k(inh) × 10(−3) M(−1)s(−1)) for the AIBN system declined in the order estrone (2.2) > BPA (2.0) > DES (1.9) > 2-hydroxyestradiol (1.2) > BMP (1.1), whereas that for the BPO system declined in the order 2-hydroxyestradiol (3.2) > estrone (1.4) > DES (1.2) > BPA (1.0) > BMP (0.9). The radical-scavenging activity for bioactive compounds such as estrogens should be evaluated using these two methods (the n and k(inh)) to elucidate the mechanism of a particular reaction. The great difference of the n and k(inh) for estrogens between the AIBN and BPO system suggested that their oxidation process is complex. |
format | Online Article Text |
id | pubmed-3685384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-36853842013-06-19 Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method Kadoma, Yoshinori Fujisawa, Seiichiro Int J Mol Sci Full Research Paper The radical-scavenging activity of estrogens (estrone, 2-hydroxyestradiol), estrogen-like compounds (diethylstilbestrol, DES; bisphenol A, BPA) and the monophenolic compound 2,6-di-t-butyl-4-methoxyphenol (BMP) was investigated using the method of measuring the induction period for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2′-azobisisobutyronitrile (AIBN) and benzoyl peroxide (BPO) at 70°C using differential scanning calorimetry (DSC). The stoichiometric factor (n, number of free radicals trapped by one mole of antioxidant moiety) for the AIBN system declined in the order BMP (2.0), 2-hydroxyestradiol (2.0)> DES (1.3) > BPA (1.2) > estrone (0.9), whereas that for the BPO system declined in the order BMP (2.0) >DES (1.9), BPA (1.9) > estrone (1.3) > 2-hydroxyestradiol (0.7). The inhibition rate constant (k(inh) × 10(−3) M(−1)s(−1)) for the AIBN system declined in the order estrone (2.2) > BPA (2.0) > DES (1.9) > 2-hydroxyestradiol (1.2) > BMP (1.1), whereas that for the BPO system declined in the order 2-hydroxyestradiol (3.2) > estrone (1.4) > DES (1.2) > BPA (1.0) > BMP (0.9). The radical-scavenging activity for bioactive compounds such as estrogens should be evaluated using these two methods (the n and k(inh)) to elucidate the mechanism of a particular reaction. The great difference of the n and k(inh) for estrogens between the AIBN and BPO system suggested that their oxidation process is complex. Molecular Diversity Preservation International (MDPI) 2007-04-16 /pmc/articles/PMC3685384/ Text en © 2007 by MDPI Reproduction is permitted for noncommercial purposes. |
spellingShingle | Full Research Paper Kadoma, Yoshinori Fujisawa, Seiichiro Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method |
title | Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method |
title_full | Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method |
title_fullStr | Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method |
title_full_unstemmed | Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method |
title_short | Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method |
title_sort | radical-scavenging activity of estrogen and estrogen-like compounds using the induction period method |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685384/ |
work_keys_str_mv | AT kadomayoshinori radicalscavengingactivityofestrogenandestrogenlikecompoundsusingtheinductionperiodmethod AT fujisawaseiichiro radicalscavengingactivityofestrogenandestrogenlikecompoundsusingtheinductionperiodmethod |