Cargando…

Photoactivatable metal complexes: from theory to applications in biotechnology and medicine

This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Nichola A., Sadler, Peter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685452/
https://www.ncbi.nlm.nih.gov/pubmed/23776303
http://dx.doi.org/10.1098/rsta.2012.0519
_version_ 1782273692443607040
author Smith, Nichola A.
Sadler, Peter J.
author_facet Smith, Nichola A.
Sadler, Peter J.
author_sort Smith, Nichola A.
collection PubMed
description This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal–carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)—a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers.
format Online
Article
Text
id pubmed-3685452
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-36854522013-07-28 Photoactivatable metal complexes: from theory to applications in biotechnology and medicine Smith, Nichola A. Sadler, Peter J. Philos Trans A Math Phys Eng Sci Introduction This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal–carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)—a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers. The Royal Society Publishing 2013-07-28 /pmc/articles/PMC3685452/ /pubmed/23776303 http://dx.doi.org/10.1098/rsta.2012.0519 Text en http://creativecommons.org/licenses/by/3.0/ © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Introduction
Smith, Nichola A.
Sadler, Peter J.
Photoactivatable metal complexes: from theory to applications in biotechnology and medicine
title Photoactivatable metal complexes: from theory to applications in biotechnology and medicine
title_full Photoactivatable metal complexes: from theory to applications in biotechnology and medicine
title_fullStr Photoactivatable metal complexes: from theory to applications in biotechnology and medicine
title_full_unstemmed Photoactivatable metal complexes: from theory to applications in biotechnology and medicine
title_short Photoactivatable metal complexes: from theory to applications in biotechnology and medicine
title_sort photoactivatable metal complexes: from theory to applications in biotechnology and medicine
topic Introduction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685452/
https://www.ncbi.nlm.nih.gov/pubmed/23776303
http://dx.doi.org/10.1098/rsta.2012.0519
work_keys_str_mv AT smithnicholaa photoactivatablemetalcomplexesfromtheorytoapplicationsinbiotechnologyandmedicine
AT sadlerpeterj photoactivatablemetalcomplexesfromtheorytoapplicationsinbiotechnologyandmedicine