Cargando…

Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures

Porous anodic alumina membranes (AAMs) have attracted great amount of attention due to their potential application as templates for nanoengineering. Template-guided fabrication and assembly of nanomaterials based on AAMs are cost-effective and scalable methods to program and engineer the shape and m...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Qingfeng, Leung, Siu-Fung, Tsui, Kwong-Hoi, Hua, Bo, Fan, Zhiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685551/
https://www.ncbi.nlm.nih.gov/pubmed/23742170
http://dx.doi.org/10.1186/1556-276X-8-268
Descripción
Sumario:Porous anodic alumina membranes (AAMs) have attracted great amount of attention due to their potential application as templates for nanoengineering. Template-guided fabrication and assembly of nanomaterials based on AAMs are cost-effective and scalable methods to program and engineer the shape and morphology of nanostructures and nanomaterials. In this work, perfectly ordered AAMs with the record large pitch up to 3 μm have been fabricated by properly controlling the anodization conditions and utilization of nanoimprint technique. Due to the capability of programmable structural design and fabrication, a variety of nanostructures, including nanopillar arrays, nanotower arrays, and nanocone arrays, have been successfully fabricated using nanoengineered AAM templates. Particularly, amorphous Si nanocones have been fabricated as three-dimensional nanophotonic structures with the characterization of their intriguing optical anti-reflection property. These results directly indicate the potential application of the reported approach for photonics and optoelectronics.