Cargando…

A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti

BACKGROUND: Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or t...

Descripción completa

Detalles Bibliográficos
Autores principales: Curtis, Andrew, Blackburn, Jason K, Widmer, Jocelyn M, Morris Jr, J Glenn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685559/
https://www.ncbi.nlm.nih.gov/pubmed/23587358
http://dx.doi.org/10.1186/1476-072X-12-21
_version_ 1782273705378840576
author Curtis, Andrew
Blackburn, Jason K
Widmer, Jocelyn M
Morris Jr, J Glenn
author_facet Curtis, Andrew
Blackburn, Jason K
Widmer, Jocelyn M
Morris Jr, J Glenn
author_sort Curtis, Andrew
collection PubMed
description BACKGROUND: Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. METHODS: Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. RESULTS: Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these “hotspots”. CONCLUSIONS: Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations.
format Online
Article
Text
id pubmed-3685559
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36855592013-06-19 A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti Curtis, Andrew Blackburn, Jason K Widmer, Jocelyn M Morris Jr, J Glenn Int J Health Geogr Methodology BACKGROUND: Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. METHODS: Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. RESULTS: Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these “hotspots”. CONCLUSIONS: Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations. BioMed Central 2013-04-15 /pmc/articles/PMC3685559/ /pubmed/23587358 http://dx.doi.org/10.1186/1476-072X-12-21 Text en Copyright © 2013 Curtis et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology
Curtis, Andrew
Blackburn, Jason K
Widmer, Jocelyn M
Morris Jr, J Glenn
A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti
title A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti
title_full A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti
title_fullStr A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti
title_full_unstemmed A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti
title_short A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti
title_sort ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in haiti
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685559/
https://www.ncbi.nlm.nih.gov/pubmed/23587358
http://dx.doi.org/10.1186/1476-072X-12-21
work_keys_str_mv AT curtisandrew aubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT blackburnjasonk aubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT widmerjocelynm aubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT morrisjrjglenn aubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT curtisandrew ubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT blackburnjasonk ubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT widmerjocelynm ubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti
AT morrisjrjglenn ubiquitousmethodforstreetscalespatialdatacollectionandanalysisinchallengingurbanenvironmentsmappinghealthrisksusingspatialvideoinhaiti