Cargando…
Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology
BACKGROUND: In this paper, we use: i) formalised anatomical knowledge of connectivity between body structures and ii) a formal theory of physiological transport between fluid compartments in order to define and make explicit the routes followed by proteins to a site of interaction. The underlying pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685606/ https://www.ncbi.nlm.nih.gov/pubmed/23590598 http://dx.doi.org/10.1186/1471-2105-14-131 |
_version_ | 1782273713956192256 |
---|---|
author | Grenon, Pierre de Bono, Bernard |
author_facet | Grenon, Pierre de Bono, Bernard |
author_sort | Grenon, Pierre |
collection | PubMed |
description | BACKGROUND: In this paper, we use: i) formalised anatomical knowledge of connectivity between body structures and ii) a formal theory of physiological transport between fluid compartments in order to define and make explicit the routes followed by proteins to a site of interaction. The underlying processes are the objects of mathematical models of physiology and, therefore, the motivation for the approach can be understood as using knowledge representation and reasoning methods to propose concrete candidate routes corresponding to correlations between variables in mathematical models of physiology. In so doing, the approach projects physiology models onto a representation of the anatomical and physiological reality which underpins them. RESULTS: The paper presents a method based on knowledge representation and reasoning for eliciting physiological communication routes. In doing so, the paper presents the core knowledge representation and algorithms using it in the application of the method. These are illustrated through the description of a prototype implementation and the treatment of a simple endocrine scenario whereby a candidate route of communication between ANP and its receptors on the external membrane of smooth muscle cells in renal arterioles is elicited. The potential of further development of the approach is illustrated through the informal discussion of a more complex scenario. CONCLUSIONS: The work presented in this paper supports research in intercellular communication by enabling knowledge‐based inference on physiologically‐related biomedical data and models. |
format | Online Article Text |
id | pubmed-3685606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36856062013-06-26 Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology Grenon, Pierre de Bono, Bernard BMC Bioinformatics Research Article BACKGROUND: In this paper, we use: i) formalised anatomical knowledge of connectivity between body structures and ii) a formal theory of physiological transport between fluid compartments in order to define and make explicit the routes followed by proteins to a site of interaction. The underlying processes are the objects of mathematical models of physiology and, therefore, the motivation for the approach can be understood as using knowledge representation and reasoning methods to propose concrete candidate routes corresponding to correlations between variables in mathematical models of physiology. In so doing, the approach projects physiology models onto a representation of the anatomical and physiological reality which underpins them. RESULTS: The paper presents a method based on knowledge representation and reasoning for eliciting physiological communication routes. In doing so, the paper presents the core knowledge representation and algorithms using it in the application of the method. These are illustrated through the description of a prototype implementation and the treatment of a simple endocrine scenario whereby a candidate route of communication between ANP and its receptors on the external membrane of smooth muscle cells in renal arterioles is elicited. The potential of further development of the approach is illustrated through the informal discussion of a more complex scenario. CONCLUSIONS: The work presented in this paper supports research in intercellular communication by enabling knowledge‐based inference on physiologically‐related biomedical data and models. BioMed Central 2013-04-16 /pmc/articles/PMC3685606/ /pubmed/23590598 http://dx.doi.org/10.1186/1471-2105-14-131 Text en Copyright © 2013 Grenon and de Bono; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Grenon, Pierre de Bono, Bernard Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
title | Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
title_full | Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
title_fullStr | Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
title_full_unstemmed | Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
title_short | Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
title_sort | eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685606/ https://www.ncbi.nlm.nih.gov/pubmed/23590598 http://dx.doi.org/10.1186/1471-2105-14-131 |
work_keys_str_mv | AT grenonpierre elicitingcandidateanatomicalroutesforproteininteractionsascenariofromendocrinephysiology AT debonobernard elicitingcandidateanatomicalroutesforproteininteractionsascenariofromendocrinephysiology |